OV-INFO.RU

Mikroilmasto, jossa on ilmanvaihtojärjestelmät asuin- tai tuotantotilassa, vaikuttaa ihmisten hyvinvointiin ja suorituskykyyn. Luodakseen mukavat elinolosuhteet on kehitetty normit, jotka määräävät ilman koostumuksen.

Yritämme selvittää, mikä ilmavirta kanavassa on, niin että se pysyy aina tuoreena ja täyttää hygieniavaatimukset.

Ilmansuojan merkitys ihmisille

Rakennuksen ja hygienian normien mukaan jokaisella elin- tai tuotantolaitoksella on oltava ilmanvaihtojärjestelmä.

Sen päätavoitteena on ylläpitää ilmatasapainoa, luoda suotuisa mikroilmasto työhön ja vapaa-aikaan. Tämä tarkoittaa sitä, että ilmapiirissä, jossa ihmiset hengittävät, ei pitäisi olla ylimääräistä lämpöä, kosteutta ja erilaista saastumista.

Ilmanvaihtojärjestelmän organisoinnin rikkomukset johtavat tartuntatautien ja hengityselinten sairauksien kehittymiseen, immuniteetin vähenemiseen, ennenaikaiseen ruoan vaurioitumiseen.

Kohtuuttoman kosteassa ja lämpimässä ympäristössä patogeeniset mikro-organismit kehittyvät nopeasti, muotin ja sienen roolit näkyvät seinille, kattoille ja jopa huonekaluille.

Yksi terveellisen ilman tasapainon ylläpitämisen edellytyksistä on ilmanvaihtojärjestelmän oikea muotoilu. Jokainen lentoverkon osa olisi valittava huoneen tilavuuksien ja ilmamäärän perusteella.

Oletetaan, että pienessä huoneistossa on vakiintunut toimitus- ja poistoilmastointi, kun taas tuotantolaitoksissa on tarpeen asentaa laitteita pakotettuun ilmanvaihtoon.

Talojen, julkisten laitosten ja kauppojen rakentamisessa noudatetaan seuraavia periaatteita:

  • jokainen huone on varustettava ilmanvaihtojärjestelmällä;
  • on huolehdittava hygieenisistä ilmanparametreista;
  • yrityksissä on tarpeen asentaa laitteita, jotka lisäävät ja säätävät lentoliikenteen nopeutta; asuintiloissa - ilmastointilaitteita tai tuulettimia, jos ilmanvaihto ei ole riittävä;
  • erilaisissa tiloissa (esim. potilaille ja leikkaussaliin tai toimistoon ja tupakointihuoneeseen) on tarpeen varustaa erilaiset järjestelmät.

Jotta ilmanvaihto täyttäisi luetellut olosuhteet, sinun on tehtävä laskelmia ja otettava laitteet - ilman- ja ilmanvaihtokanavat.

Järjestelmän tuulettamisen yhteydessä on kuitenkin tarpeen valita oikeat ilmanottoasemat estäen saastuneiden virtojen kulun takaisin tiloihin.

Ilmanvaihtotoiminnan tehokkuus riippuu ilmakanavien (mukaan lukien talon kaivokset) mittojen mukaan. Selvitetään, mitkä ovat ilman virtausnopeuden normit saniteettidokumentaation mukaisessa tuuletuksessa.

Säädöt ilman nopeuden määrittämiseksi

Ilmaliikenteen nopeus liittyy läheisesti sellaisiin käsitteisiin kuin melutaso ja tärinän taso ilmanvaihtojärjestelmässä. Kanavien läpi kulkeminen luo tiettyä kohinaa ja paineita, jotka lisääntyvät käännösten ja taivutusten mukaan.

Mitä suurempi putkissa oleva vastus, sitä pienempi ilman nopeus ja sitä suurempi puhallin suorituskyky. Harkitse asiaan vaikuttavien tekijöiden normit.

№ 1 - Melutason hygieniavaatimukset

SNiP: ssä mainitut standardit koskevat asuin- (yksityis- ja monen huoneiston) tiloja, julkisia ja teollisia.

Alla olevassa taulukossa voit vertailla eri tilatyyppien hintoja sekä rakennusten vieressä olevia alueita.

Yksi syy hyväksyttyjen normien lisääntymiseen voi olla virheellisesti suunniteltu kanavajärjestelmä.

Äänenpainetasot esitetään toisessa taulukossa:

№2 - tärinän taso

Puhaltimien suorituskyky liittyy suoraan tärinän tasoon. Tärinän enimmäiskynnys riippuu useista tekijöistä:

  • ilmakanavan mitat;
  • tiivisteiden laatu, jolla varmistetaan tärinän tason alentaminen;
  • putken materiaali;
  • kanavien kautta kulkevan ilmavirran nopeus.

Seuraavassa taulukossa on esitetty normit, jotka tulisi noudattaa valittaessa tuuletuslaitteita ja laskettaessa kanavia:

Ilman nopeus kaivoksissa ja kanavissa ei saisi vaikuttaa tärinän indeksoinnin kasvuun eikä äänen heilahteluihin liittyviin parametreihin.

№3 - lentoliikenteen taajuus

Ilmanpuhdistus johtuu ilmanvaihtoprosessista, joka on jaettu luonnollisiin tai pakkoihin.

Ensimmäisessä tapauksessa se suoritetaan, kun ovet avataan, transoms, ruudut, ikkunat (tunnetaan ilmastus), tai yksinkertaisesti tunkeutuminen halkeamia risteyksissä seinät, ovet ja ikkunat, toisen - avulla ilmastointi ja ilmanvaihto.

Huoneen, kodinhoitohuoneen tai myymälän ilmaa tulee vaihtaa useita kertoja tunnissa, jotta ilman pilaantumisen aste voidaan hyväksyä.

Siirtymän määrä on moninaisuus, arvo, joka on myös välttämätön ilmavirran nopeuden määrittämiseksi ilmanvaihtokanavissa.

Moninkertaisuus lasketaan seuraavalla kaavalla:

N = V / W

  • N - lentoliikenteen taajuus kerran tunnissa;
  • V - tilan täyttävän puhtaan ilman määrä 1 tunti, m³ / h;
  • W - huoneen tilavuus, m³.

Jotta ylimääräisiä laskutoimituksia ei suoritettaisi, keskimääräiset kertoimet kerätään taulukoissa.

Esimerkiksi asuintilojen osalta seuraava taulukko ilmastokurssista soveltuu:

Mitä tapahtuu, jos lentorahtikurssien normit eivät täyty tai tulevat, mutta eivät riitä?

Yksi kahdesta asiasta tulee olemaan:

  • Moninkertaisuus on normaalin alapuolella. Raitis ilma pysähtyy korvaamaan saastuneet, jolloin haitallisten aineiden pitoisuus huoneeseen: bakteerit, patogeenit, vaaralliset kaasut. Ihon hengityselimelle tärkeä happea vähenee ja hiilidioksidi päinvastoin kasvaa. Kosteus nousee maksimiin, joka on täynnä muotin ulkonäköä.
  • Moninkertaisuus on normaalia suurempi. Tapahtuu, jos kanavan ilmamäärän nopeus ylittää normin. Tämä vaikuttaa negatiivisesti lämpötilajärjestelyyn: huoneella ei juuri ole aikaa lämmittää. Liiallinen kuiva ilma aiheuttaa ihon ja hengityselinten sairauksia.

Jotta ilmanvaihtotaajuus vastaa saniteettitasoja, on tarpeen asentaa, poistaa tai säätää ilmanvaihtolaitteita ja tarvittaessa vaihtaa ilmakanavat.

Ilman nopeuslaskennan algoritmi

Kun otetaan huomioon tietyn huoneen edellä mainitut olosuhteet ja tekniset parametrit, on mahdollista määrittää ilmanvaihtojärjestelmän ominaisuudet sekä laskea ilman nopeus putkissa.

Luottamukselle lentoliikenteen moninaisuudelle, joka näille laskelmille on ratkaiseva arvo.

Virtausparametrien selventämiseksi taulukko on hyödyllinen:

Jos haluat tehdä laskutoimituksia omasta, sinun on tiedettävä huoneen tilavuus ja tietyn tyyppisen huoneen tai hallin ilmanvaihto.

Esimerkiksi studiossa on oltava keittiö, jonka kokonaistilavuus on 20 m³. Otetaan kynnysarvon vähimmäisarvo 6 - 6 ilmenee, että ilmakanavien on liikuttava 1 tunnin kuluessa L = 20 m³ * 6 = 120 m³.

Myös ilmanvaihtojärjestelmään asennettavien kanavien poikkipinta-ala on tarpeen. Se lasketaan seuraavalla kaavalla:

S = πr 2 = π / 4 * D 2

  • S - kanavan poikkipinta-ala;
  • π - numero "pi", matemaattinen vakio, joka on sama kuin 3.14;
  • R - kanavan osan säde;
  • D - kanavan osan halkaisija.

Oletetaan, että pyöreän kanavan halkaisija on 400 mm, korvata se kaavalla ja saada:

S = (3,14 * 0,42) / 4 = 0,1256 m²

Tietäen poikkipinta-alan ja virtauksen, voimme laskea nopeuden. Ilmavirran nopeuden laskentakaava:

V = L / 3600 * S

  • V - ilmavirran nopeus, (m / s);
  • L - ilman kulutus (m³ / h);
  • S - ilmakanavien poikkipinta-ala (ilmakanavat), (m²).

Vahvistetaan tunnetut arvot: V = 120 / (3600 * 0.1256) = 0,265 m / s

Näin ollen, sen varmistamiseksi, että vaadittu ilmanvaihdon (120 m 3 / h) käyttäen pyöreään kanavaan, jonka halkaisija on 400 mm, on pakko asentaa laitteet lisätä ilman virtausnopeus 0,265 m / s.

On muistettava, että aiemmin kuvatut tekijät - tärinän ja melutason tason parametrit - riippuvat suoraan ilmaliikenteen nopeudesta.

Jos kohina ylittää normaalit arvot, on tarpeen pienentää nopeutta, täten ilman kanavien poikkileikkauksen lisäämiseksi. Joissakin tapauksissa riittää, että putket asennetaan toisesta materiaalista tai korvataan kaareva kanavan fragmentti suoralla viivalla.

Suositeltavat kurssinopeudet

Rakennuksen suunnittelussa lasketaan jokaisen yksittäisen sivuston. Tuotannossa se on työpaja, kerrostaloissa - huoneistossa, yksityisessä talossa - lattiapaneelissa tai erillisissä huoneissa.

Ennen ilmanvaihtojärjestelmän asennusta tiedetään, mitä pääteiden reitit ja koot ovat, mitä geometriaa ilmanvaihtokanavat tarvitsevat, minkä kokoiset putket ovat optimaalisia.

Asuin- ja teollisuusrakennusten ilmavirtojen liikkumiseen liittyviä laskelmia pidetään kaikkein vaikeimpina, joten niiden käsittelyyn vaaditaan kokeneita osaavia asiantuntijoita.

Suositeltu ilmanopeus kanavissa on merkitty SNiP - normatiivisissa tilasiakirjoissa ja esineiden suunnittelussa tai toimituksessa ne ohjataan tarkasti.

Uskotaan, että huoneen sisällä ilman nopeus ei saa ylittää 0,3 m / s.

Poikkeuksia ovat tilapäiset tekniset olosuhteet (esimerkiksi korjaustyöt, rakennuslaitteiden asennus jne.), Joiden aikana parametrit voivat ylittää standardit korkeintaan 30 prosentilla.

Suurissa tiloissa (autotallit, tuotantolaitokset, varastot, hangarit), usein kaksi ilman tuuletusjärjestelmää.

Kuormitus on siis jaettu puoleen, ja ilman nopeus on valittu siten, että se antaa 50% arvioidusta ilmamäärän kokonaismäärästä (saastuneiden aineiden poisto tai puhdasta ilmaa).

Ylivoimaisen esteen sattuessa ilmavirran nopeus tai ilmanvaihtojärjestelmän täydellinen suspensio on tarpeen.

Esimerkiksi paloturvallisuuden vaatimusten mukaan ilmanopeus alenee minimiin tulipalon ja savun leviämisen estämiseksi naapurustossa sytytyksen aikana.

Tätä tarkoitusta varten terät ja venttiilit on asennettu kanaviin ja siirtymäosastoihin.

Kanavavalinnan hienous

Kun tiedät aerodynaamisten laskelmien tulokset, voit valita oikein ilmakanavien parametrit tai tarkemmin - pyöreän halkaisijan ja suorakaiteen muotoisten osien mitat.

Lisäksi rinnakkain voit valita laitteen pakotetun ilman syöttämiseksi (tuuletin) ja määrittää painehäviön ilmavirran aikana kanavan kautta.

Kun tiedät ilmavirtauksen määrän ja sen liikkumisnopeuden, voit määrittää, mitkä jakokanavat vaaditaan.

Tätä varten otetaan kaava, joka on käänteinen ilmavirran laskemiseen: S = L / 3600 * V.

Tuloksen avulla voit laskea halkaisijan:

D = 1000 * √ (4 * S / π)

  • D - kanavan osan halkaisija;
  • S - ilmakanavien poikkipinta-ala (ilmakanavat), (m²);
  • π - numero "pi", matemaattinen vakio, joka on 3,14;

Saatua määrää verrataan GOST: n mukaisesti hyväksyttyihin tehdasnormeihin ja valitaan halkaisijaltaan lähimmät tuotteet.

Jos haluat valita suorakulmaisia, ei pyöreitä kanavia, sinun on sen sijaan määritettävä tuotteiden pituuden / leveyden halkaisija.

Valitessaan ne ohjataan likimääräisellä poikkileikkauksella käyttäen periaatetta a * b ≈ S ja valmistajien toimittamat kokoluokat. Me muistutamme, että normien mukaan leveyden (b) ja pituuden (a) suhde ei saisi ylittää arvoa 1-3.

Suorakulmaisten kanavien yhteiset standardit: vähimmäismitat - 100 mm x 150 mm, maksimi - 2000 mm x 2000 mm. Pyöreät kanavat ovat hyviä, koska niillä on vähemmän vastustuskykyä, vastaavasti niillä on melutaso.

Viime aikoina, erityisesti huoneistokäyttöön, ne tuottavat mukavia, turvallisia ja kevyitä muovisia laatikoita.

Hyödyllinen video aiheesta

Hyödyllisiä videoita opettaa kuinka toimia fyysisten määrien kanssa ja auttaa ymmärtämään paremmin, miten ilmanvaihtojärjestelmä toimii.

Luontaisen ilmanvaihdon parametrien laskeminen tietokoneohjelmalla:

Hyödyllisiä tietoja laitteen tuuletusjärjestelmästä hiljattain rakennettuun yksityiseen taloon:

Artikkelin tietoja voidaan käyttää informaatiotarkoituksiin ja kuvata paremmin ilmanvaihtojärjestelmän toimintaa. Ilmaisimen nopeuden tarkentamiseksi kotiviestinnän suunnittelussa suosittelemme, että otat yhteyttä insinööriin, jotka tuntevat ilmanvaihtolaitteen vivahteet ja auttavat sinua valitsemaan oikean ilmakanavan mitat.

Ilman nopeus kanavassa: laskelmat ja mittaukset

Jokainen ilmanvaihtoverkko koostuu kanavista, laitteista ja muotoisista elementeistä. Tarvittavan ilmanvaihtoa varten tärkeä parametri ei ole ainoastaan ​​syöttö- ja pakojärjestelmien kapasiteetti ja verkon kokoonpano, vaan myös ilmakanavien aerodynaaminen laskenta.

Materiaalin ja osan muoto

Ensimmäinen asia, joka tehdään suunnittelun valmisteluvaiheessa, on materiaalin valinta ilmakanaville, niiden muoto, koska kun kaasut hankautuvat kanava-seiniä vasten, ne syntyvät. Jokaisella materiaalilla on erilainen karkeus sisäpinnasta, joten kanavien valinnassa ilmavirran liikkumiskestävyys on erilainen.

Riippuen asennus yksityiskohtia laatuun ja ilman seos, joka liikkuu järjestelmän läpi ja budjetti teosten valittu ruostumattomasta teräksestä, muovista tai päällystettyä terästä sinkitty kanavia, pyöreä tai suorakulmainen poikkileikkaus.

Suorakaideputkia käytetään useimmiten hyödyllisen tilan säilyttämiseen. Pyöreät päinvastoin ovat melko hankalia, mutta niillä on paremmat aerodynaamiset parametrit ja sen seurauksena suunnittelun melu. Ilmanvaihtoverkon asianmukaisen rakenteen kannalta tärkeät parametrit ovat ilmakanavien poikkipinta-ala, ilman virtaus ja sen nopeus kanavan kulkiessa.

Vaikutuksen muoto ei vaikuta siirrettävien ilmamassojen määrään.

Kaasujen liikkumisen ominaisuudet

Kuten edellä mainittiin, ilmastoinnin rakentamisessa suoritetuissa laskelmissa on kolme parametria: ilmamassan virtaus ja nopeus sekä ilmakanavien pinta-ala. Näistä parametreista vain yksi normalisoidaan - tämä on poikkileikkausalue. Asuintilojen ja lasten laitosten lisäksi ilmavirtauskanavassa SNiP ei ole säännelty.

Referenssikirjallisuudessa on olemassa suosituksia ilmanvaihtoverkkoihin virtaavien kaasujen liikkumisesta. Arvot suositellaan käyttötarkoituksen, erityisolosuhteiden, mahdollisten painehäviöiden ja kohinakuvien perusteella. Taulukko heijastaa suositeltuja tietoja pakotetuille tuuletusjärjestelmille.

Luonnolliselle tuuletukselle oletetaan, että kaasujen liike on 0,2-1 m / s.

Laskentamenetelmä

Laskelmien suorittamiseen käytetty algoritmi on seuraava:

  • Axonometrinen kaavio on koottu kaikkien elementtien luetteloon.
  • Järjestelmän perusteella lasketaan kanavien pituus.
  • Virtaus kussakin sen osassa määritetään. Jokaisessa erillisessä osassa on yksi ainoa ilmakanavien osa.
  • Tämän jälkeen lasketaan lentoliikenteen ja paineen nopeus jokaisessa järjestelmän yksittäisessä osassa.
  • Seuraavaksi lasketaan kitkahäviöt.
  • Käyttämällä vaadittua kerrointa lasketaan paikallisen resistenssin painehäviö.

Laskennan aikana ilmajohtoverkon jokaisessa osassa saadaan erilaisia ​​tietoja, jotka on tasattava suurimman vastuksen haarojen kanssa kalvojen avulla.

Laskentamenetelmä

Aluksi on välttämätöntä laskea kanavan tarvittava leikkausalue virtauksen tietojen perusteella.

  • Kanavan poikkipinta-ala lasketaan kaavalla

LP - tiedot vaaditun ilman tilavuudesta tietyllä alueella.

VT - Suositeltu tai sallittu ilmanopeus ilmakanavassa tiettyyn tarkoitukseen.

  • Saadut vaaditut tiedot, tehdään valinta ilmavirran koosta lähelle suunnitteluarvoa. Uusien tietojen avulla lasketaan kaasun liikkeen todellinen nopeus ilmanvaihtojärjestelmän osassa kaavan mukaisesti:

LP - kaasuseoksen virtausnopeus.

ff - valitun ilman kanavan todellinen poikkipinta-ala.

Samanlaisia ​​laskelmia on tehtävä jokaisen ilmanvaihtoaukon osalle.

Ilman nopeuden laskemiseksi kanavassa on välttämätöntä ottaa huomioon kitkamuutokset ja paikalliskestävyys. Yksi häiriöitä vaurioittavista parametreista on kitkakerroin, joka riippuu ilmatiemateriaalin karheudesta. Kitkakertoimia koskevat tiedot löytyvät vertailukirjallisuudesta.

Kitkamäärien laskeminen

Ensinnäkin on otettava huomioon ilmakanavan muoto ja materiaali, josta se on tehty.

  • Pyöreille tuotteille laskentakaava näyttää tältä:

X - taulukoitu kitkakerroin (riippuu materiaalista);

minä - ilmakanavan pituus;

D - kanavan halkaisija;

V - kaasujen liikkumisnopeus tietyssä verkon osassa;

Y - kuljetettavien kaasujen tiheys (taulukkojen perusteella);

Tärkeää! Jos ilmansyöttöjärjestelmässä käytetään suorakaiteen muotoisia kanavia, kaavassa on korvattava suorakulmion (kanavaosan) sivujen vastaava halkaisija. Laskelmat voidaan tehdä kaavalla: d eq = 2AB / (A + B). Käännettäessä voit käyttää alla olevaa taulukkoa.

  • Paikallisvastuksen häviöt lasketaan kaavalla:

Q - paikallisen vastuksen tappioiden kertoimien summa;

V - ilmavirran nopeus verkko-osassa;

Y - kuljetettavien kaasujen tiheys (taulukkojen perusteella);

Tärkeää! Ilmanjakeluverkkojen rakentamisen kannalta erittäin tärkeä rooli on oikea valinta lisäelementeistä, joihin kuuluvat: ristikot, suodattimet, venttiilit jne. Nämä elementit luovat vastustuskykyä ilmamassojen liikkumiselle. Projektia luotaessa kiinnität huomiota laitteiden asianmukaiseen valintaan, koska tuulettimen siivet ja kosteudenpoistimien ja ilmankostuttimien toiminta aiheuttavat resistanssin lisäksi suurimman melun ja vastustuskyvyn ilmavirtauksiin.

Ilmanjakojärjestelmän häviöiden laskeminen, kun tiedetään tarvittavat parametrit kaasujen liikkumisesta kussakin sen osassa, voit siirtyä ilmanvaihtolaitteiden valintaan ja järjestelmän asentamiseen.

Nykyisen ilmanvaihtojärjestelmän säätö

Suurin tapa tunnistaa ilmanvaihtoverkkojen toiminta on mitata kanavan ilmavirta, koska kanavien halkaisijan tuntemisen avulla on helppo laskea todellinen ilmamassavirta. Tähän tarkoitetut välineet kutsutaan anemometreiksi. Riippuen ilmamassan liikkeiden ominaisuuksista, sovelletaan:

  • Mekaaniset laitteet, joissa on juoksupyörä. Mittausraja 0,2 - 5 m / s;
  • Kannen anemometrit mittaavat ilman virtauksen välillä 1-20 m / s;
  • Sähköisiä lämpöanemometrejä voidaan käyttää mittauksiin kaikissa ilmanvaihtoverkossa.

Näissä laitteissa kannattaa asua tarkemmin. Elektroniset lämpöanemometrit eivät edellytä analogisten laitteiden käyttöä, kuten luukkujen järjestämistä kanavissa. Kaikki mittaukset tehdään asentamalla anturi ja hankkimalla tietoja laitteeseen rakennetulle näytölle. Tällaisten laitteiden mittausvirheet eivät ylitä 0,2%. Useimmat nykyaikaiset mallit voivat toimia joko paristoilla tai 220 V: n virtalähteellä. Siksi käyttöönottoa varten ammattilaiset suosittelevat sähköisiä anemometrejä.

Yhteenvetona: ilmavirtauksen, ilman virtauksen ja kanavien poikkipinta-ala ovat tärkeimmät parametrit ilmanjako- ja ilmanvaihtoverkkojen suunnittelulle.

Vinkki: Tässä artikkelissa havainnollistavana esimerkkinä on esitetty aerodynaamisen laskennan menetelmä ilmanvaihtojärjestelmän hengitysteiden osaan. Tietojenkäsittelytoimintojen suorittaminen on melko monimutkainen prosessi, joka vaatii tietoa ja kokemusta sekä ottaen huomioon paljon vivahteita. Älä tee sitä itse, mutta luottaa siihen ammattilaisille.

Ilman nopeuden määrittäminen kanavassa

Tulevan ilmanvaihtojärjestelmän kehittämiseksi on tärkeää määrittää kanavien mitat, jotka on tehtävä tietyissä olosuhteissa. Hiljattain rakennetussa rakennuksessa on helpompi tehdä tämä suunnitteluvaiheessa, jossa kaikki tekniset verkot ja tekniset laitteet sijaitsevat sääntelyasiakirjojen mukaisesti. Toinen asia, kun kyseessä on jälleenrakennus tai tuotannon tekninen uudelleenkäyttö, on asetettava ilmakanavien reitit ottaen huomioon nykyiset olosuhteet. Kanavien mitat voivat olla suuri rooli, ja niiden oikea laskeminen edellyttää optimaalisen nopeuden säätämistä.

Taulukon ilman nopeus kanavassa.

Laskentamenetelmä

Laitteessa on toinen versio syöttö- ja poistoilmastoinnille, jossa on mekaaninen motivaatio. Se koostuu nykyisten ilmakanavien käyttämisestä uusille ilmanvaihtolaitteille. Myöskään vanhojen putkien virtausnopeuden laskemista ei voida tehdä tutkimusten ja mittausten perusteella.

Yleinen kaava ilmamassan nopeuden arvon laskemiseksi (V, m / s) johdetaan kaavasta tuloilman (L, m3 / h) laskemiseksi kanavaosan (F, m2) koosta riippuen:

L = 3600 x F x V

Huomaa: kerrotaan 3600: lla, jotta ajan yksiköitä (tunteja ja sekuntia) voidaan sovittaa yhteen.

Ilman nopeuden mittausmenetelmä.

Näin ollen virtausnopeuden kaava voidaan esittää seuraavassa muodossa:

Laske olemassa olevan kanavan poikkipinta-ala ei ole vaikea, mutta jos se on laskettava? Tällöin menetelmän valitaan kanavan mitat suositeltavien ilmavirtausnopeuksien mukaan pelastamiseksi. Aluksi laskelmissa mukana olevista kolmesta parametristä tässä vaiheessa on oltava selvä tuntemus - tämä on tietyn huoneen ilmanvaihdossa tarvittavan ilmaseoksen määrä (L, m3 / cc). Se määritellään sääntelykehyksen mukaisesti rakenteen ja sen sisäisten huoneiden tarkoituksesta riippuen. Laskenta suoritetaan kunkin huoneen ihmisten lukumäärän tai vapautuneiden haitallisten aineiden, ylijäämäisen lämmön tai kosteuden mukaan. Tämän jälkeen sinun on otettava ilmavirran alustava arvo kanavissa, voit tehdä tämän käyttäen suositeltujen nopeuksien taulukkoa.

Kanavan mitat

Valittamalla ilmakanavan tyyppi ja olettaen suunnittelunopeuden, on mahdollista määrittää tulevan kanavan poikkileikkaus yllä esitetyillä kaavoilla. Jos se on suunniteltu pyöreään muotoon, halkaisija on helppo laskea:

Ilman kanavien laskeminen ilman tasaiselle jakelulle.

  • D on pyöreän kanavan halkaisija metreinä;
  • F - sen poikkileikkauksen alue m.
  • π = 3,14

Seuraavaksi sinun on viitattava sääntelyasiakirjoihin, jotka määrittelevät pyöreiden kanavien vakiomitat, ja valita niiden joukosta lähimpänä laskettua halkaisijaa. Tämä tehdään yhdistämällä ilmastointilaitteiden osia, joiden tuotevalikoima on jo riittävän suuri. On selvää, että SNiP: n uudella halkaisijalla on erilainen poikkileikkaus, joten on tarpeen laskea se uudelleen päinvastaisessa järjestyksessä ja saavuttaa todellisen ilmamassan virtausnopeuden arvo standardikanavassa. Tällöin virtausnopeuden L pitäisi edelleen osallistua laskelmiin vakiona. Tämä menetelmä laskee jokaisen ilmanvaihtojärjestelmän yhden osan ja hajoaminen alueille suoritetaan yhtä vakiomallista - ilman määrää (virtaus).

Jos suoritetaan suorakaiteen muotoisen kanavan kanavointi, on tarpeen valita puolien mitat siten, että niiden tuote antaa aikaisemmin lasketun poikkileikkauksen. Tällaisiin kanaviin sovellettava sääntelyrajoitus on yksi:

Tässä parametrit A ja B ovat sivujen mitat metreinä. Yksinkertaisilla sanoilla normit kieltävät suorakaiteen muotoisten putkilinjojen suorittamisen liian kapealla korkealla tai liian matalalla ja leveällä. Tällaisilla alueilla virtausvastus on liian suuri ja aiheuttaa taloudellisesti perusteettomia energiakustannuksia. Loppu kanavan todellisen ilman nopeuden laskemisesta suoritetaan yllä kuvatulla tavalla.

Suositukset valintaa varten ahtaissa olosuhteissa

Ilmastointisuunnitelmien kehittämisessä on noudatettava yhtä sääntöä, joka näkyy myös taulukossa: Järjestelmän jokaisessa osassa ilmavirta tulee kasvaa lähestymällä ilmanvaihtojärjestelmää. Jos laskelmien tulokset antavat nopeusindikaattoreita joillekin osille, jotka eivät ole tämän säännön mukaisia, niin tällainen järjestelmä ei toimi tai todellisissa olosuhteissa virtausnopeuden arvot ovat kaukana lasketuista. Ratkaise ongelma muuttamalla ilmakanavien kokoa ongelma-alueilla pienentävän tai kasvavan suuntaan.

Kaava, jonka avulla ilmaa vaihdetaan moninkertaisesti.

Kun rakennustöitä tehdään teollisuusrakennusten jälleenrakentamiseen tai tekniseen uudelleenkäyttöön, on usein tilanne, jossa ilmanvaihtokanavia ei yksinkertaisesti ole, koska rakennuksen teknisten laitteiden ja putkistojen kylläisyys on liian korkea. Sitten on tarpeen asettaa raidat kaikkein esteettömissä paikoissa tai ylittää lattiat ja seinät useita kertoja. Kaikki nämä tekijät voivat merkittävästi lisätä tällaisten kohtien vastustuskykyä. Se osoittautuu noidankehäksi: pullonkaulojen läpi, sinun täytyy pienentää kokoa ja lisätä nopeutta, mikä nostaa voimakkaasti sivuston vastustusta. Vähennä ilmanopeutta on mahdotonta, koska silloin kanavan mitat kasvavat ja se ei mene tarpeiden mukaan. Tilanne on vähentää tuulettimen tuulettimen mittoja ja lisää kapasiteettia ilmakanavaan useisiin rinnakkaisiin hihomiin.

Jos olemassa olevaa syöttö- tai poistokanavajärjestelmää on väärin käytettävä muihin suorituskykyparametreihin ilman kanssa, on ensin otettava kanavan jokaisen osan kenttämittaukset eri ulottuvuuksin. Sitten, käyttämällä uusia ilman virtausarvoja, määritä todellinen virtausnopeus ja vertaa saadut arvot taulukkoon. Käytännössä suositeltuja nopeuksia voidaan ylittää 3-5 m / s pää-, laimennuskanavilla ja haaroilla. Tulo- ja pakoputkistoissa nopeuden kasvu johtaa melutason nousuun, joten sitä ei voida hyväksyä. Jos nämä ehdot täyttyvät, vanhat ilmakanavat sopivat käytettäväksi sopivan huollon jälkeen.

Ilmanvaihtojärjestelmän kaikkien suoritettujen laskelmien oikeellisuus näyttää käyttöönoton, jonka aikana mittaukset tehdään kanavien ilmanopeudesta erityisten luukkujen avulla.

Myös mittauslaitteiden - anemometrien avulla - mitataan virtausnopeus ilmanvaihtosäleikköjen tuloaukossa tai ulostulossa. Jos luvut eivät vastaa laskettuja arvoja, koko järjestelmää säädetään lisäämällä kaasuventtiilejä tai kalvoja.

Ilman nopeuden laskeminen ilmakanavissa

Mikroilmastoindikaattoreiden parametrit määritellään GOST 12.1.2.1002-00, 30494-96, SanPin 2.2.4.548, 2.1.2.1002-00 määräysten mukaisesti. Nykyisten hallituksen määräysten perusteella kehitettiin käytännesäännöt SP 60.13330.2012. Ilman nopeus kanavalla olisi varmistettava olemassa olevien normien täytäntöönpano.

Mitä otetaan huomioon ilman nopeuden määrittämisessä

Laskelmien oikea toteutus edellyttää, että suunnittelijoiden on täytettävä useita säänneltyjä ehtoja, joista jokaisella on yhtä tärkeä merkitys. Mitkä parametrit riippuvat ilmavirran nopeudesta?

Melutaso huoneessa

Tilojen erityisestä käytöstä riippuen terveysvaatimukset asettavat seuraavat enimmäisäänenpainetasot.

Taulukko 1. Melutason enimmäisarvot.

Parametrien ylittäminen on sallittua vain lyhytaikaisessa tilassa ilmanvaihtojärjestelmän tai lisälaitteiden käynnistämisen / pysäytyksen aikana.
Tärinätaso huoneessa Puhaltimien toiminnan aikana syntyy tärinää. Tärinäindikaattorit riippuvat ilmakanavien valmistuksesta, tärinänvaimennustiivisteiden laadusta ja laadusta sekä ilmavirtauskanavien nopeudesta. Yleiset tärinäindikaattorit eivät voi ylittää valtion organisaatioiden asettamia rajoja.

Taulukko 2. Sallitun tärinän enimmäisarvot.

Laskelmissa valitaan optimaalinen nopeus ilman nopeutta, joka ei paranna värähtelyprosesseja ja niihin liittyviä äänen värähtelyjä. Ilmanvaihtojärjestelmän on säilytettävä tietty mikroilmasto tiloissa.

Taulukossa ilmoitetaan virtausnopeuden, kosteuden ja lämpötilan arvot.

Taulukko 3. Mikroilmastoparametrit.

Virtausnopeuden laskennassa huomioon otettu toinen indikaattori on ilmanvaihtojärjestelmissä tapahtuva ilmanvaihto. Niiden käytön vuoksi terveysvaatimukset asettavat seuraavat vaatimukset ilmanvaihtoa varten.

Taulukko 4. Useiden huoneiden ilmanvaihto.

Laskentalgoritmi Kanavan kanavan ilmanopeus määritetään ottaen huomioon kaikki edellä mainitut olosuhteet, asiakkaan on määritettävä tekniset tiedot ilmanvaihtojärjestelmien suunnittelussa ja asennuksessa. Tärkein kriteeri virtausnopeuden laskemiseksi on vaihdon moninaisuus. Kaikki muut hyväksynnät tehdään muuttamalla ilmakanavien muotoa ja poikkileikkausta. Virtausnopeus voidaan ottaa taulukosta riippuen kanavan nopeudesta ja halkaisijasta.

Taulukko 5. Ilmankulutus, riippuen virtausnopeudesta ja kanavan halkaisijasta.

itsearviointi

Esimerkiksi huoneessa, jonka tilavuus on 20 m 3 saniteettitasojen vaatimusten mukaisesti tehokkaaseen ilmanvaihdolle, on välttämätöntä aikaansaada kolmivaiheinen ilmanvaihto. Tämä tarkoittaa, että vähintään yhden tunnin kanavan läpi on läpäistävä vähintään L = 20 m 3 × 3 = 60 m 3. Virtausnopeuden laskentakaava on V = L / 3600 × S, jossa:

V - ilmavirran nopeus m / s;

L - ilmavirta m 3 / h;

S on kanavien poikkipinta-ala m 2: ssä.

Ota pyöreä ilmakanava Ø 400 mm, poikkipinta-ala on:

Esimerkissämme S = (3,14 x 0,4 2 m) / 4 = 0,12256 m 2. Näin ollen, jotta saadaan haluttu useita ilmanvaihdon (60 m 3 / h) on pyöreä kanava 400 mm (S = 0,1256 m 3) ilman virtausnopeus on yhtä suuri kuin: V = 60 / (0,1256 x 3600) ≈ 0,13 m / s.

Saman kaavan avulla, ennalta määrätyllä nopeudella, on mahdollista laskea kanavien välissä liikkuvan ilman tilavuus yksikköajan mukaan.

L = 3600 × S (m 3) × V (m / s). Tilavuus (kulutus) saadaan neliömetreinä.

Kuten aiemmin on kuvattu, ilmanvaihtojärjestelmien melutaso riippuu ilman nopeudesta. Tämän ilmiön negatiivisen vaikutuksen minimoimiseksi insinöörit laskivat suurimman sallitun ilmanopeuden eri huoneissa.

Taulukko 6. Suositeltavat ilmanopeusparametrit

Sama algoritmi määrittää kanavan ilmavirtauksen laskettaessa lämpöä, asettaa toleranssit talvikauden talvikauden tappioiden minimoimiseksi ja valitsee puhaltimet teholla. Ilmavirtaustietoja tarvitaan myös painehäviön pienentämiseksi, mikä mahdollistaa ilmanvaihtojärjestelmien tehon ja vähentää sähköenergian kulutusta.

Laskenta suoritetaan kullekin yksittäiselle osalle, ottaen huomioon saadut tiedot, halkaisijan ja geometrian päälinjojen parametrit valitaan. Heidän on voitava siirtää evakuoitu ilma kaikista yksittäisistä huoneista. Ilmakanavien halkaisija on valittu siten, että häiriö- ja vastushäviöt minimoidaan. Kinemaattisen järjestelmän laskemiseksi kaikki kolme ilmanvaihtojärjestelmän parametria ovat tärkeitä: pumpattavan / poistetun ilman maksimimäärä, ilmamassojen liikkumisnopeus ja ilman kanavien halkaisija. Ilmanvaihtojärjestelmien laskemista koskevat työt on luokiteltu tekniikan näkökulmasta vaikeiksi, vain erikoistumiskoulutuksen ammattilaiset voivat suorittaa ne.

Seuraavien kaavojen käyttäminen kanavien eri poikkileikkauskanavien nopeuden säätämiseksi:

Lopullisten tietojen laskennan jälkeen otetaan tavalliset putkilinjat lähimpään arvoon. Tästä johtuen laitteiden kiinnitysajankohta lyhenee ja sen säännöllinen huolto ja korjaus yksinkertaistetaan. Toinen plus on ilmanvaihtojärjestelmän arvioitu kustannusten pieneneminen.

Asuin- ja teollisuuslaitosten ilmanlämmitystä varten nopeudet säädetään ottaen huomioon jäähdytysnesteen lämpötila tulo- ja poistoaukkoissa, jotta lämmin ilma virtaa tasaisesti, asennusjärjestelmä ja ilmanvaihtosäleiden mitat harkitaan. Nykyaikaiset ilmalämmitysjärjestelmät tarjoavat mahdollisuuden säätää virtausten nopeutta ja suuntaa automaattisesti. Ilman lämpötila ei saa ylittää + 50 ° C pistorasiasta, etäisyys työpaikoista on vähintään 1,5 m. Ilmamassan nopeutta säätelevät nykyiset tilastandardit ja teollisuustoimet.

Laskelmien aikana asiakkaiden pyynnöstä voidaan ottaa huomioon mahdollisuudet asentaa muita haarakonttoreita, ja tätä tarkoitusta varten saadaan aikaan laitteiston tuottavuus ja kanavakapasiteetti. Virtausnopeudet lasketaan siten, että ilmanvaihtojärjestelmien kapasiteetin lisäämisen jälkeen ne eivät aiheuta ylimääräistä äänikuormaa huoneessa oleville ihmisille.

Halkaisijoiden valinta tehdään minimiin hyväksyttävinä, sitä pienemmät mitat - yleinen ilmanvaihtojärjestelmä, halvempaa valmistaa ja asentaa se. Paikalliset imujärjestelmät lasketaan erikseen, ne toimivat sekä itsenäisesti että voidaan liittää olemassa oleviin ilmanvaihtojärjestelmiin.

Valtion sääntelyasiakirjoissa asetetaan suositeltu liikkumisnopeus riippuen ilmakanavien sijainnista ja määräpaikasta. Laskettaessa sinun on noudatettava näitä parametrejä.

Taulukko 7. Suositeltavat ilmanopeudet eri kanavissa

Ilmavirran säätö

Ilmanjakoyksiköiden ja putkihaarojen ilmavirtauksen säätö ilmavirtaukseen.

Ilman kulutus - kyseisen poikkileikkauksen läpi kulkevan ilman määrä mitataan m 3 / h, i.e. Tämä on leikkauksen läpi kulkevan ilman tilavuus (m 3) 1 tunnin ajaksi.

Suunnittelun ilman virtausnopeus on ilmavirtaus, joka asetetaan hengitysjärjestelmän ilmastointilaitteeseen. Suunnittelu toteutetaan rakennusnormien, sääntöjen ja valtion normien perusteella.

Ilmavirtaus säädetään säätölaitteiden avulla. Sääntelyviranomaiset ovat verkkolaitteita, koska sijaitsevat ilmakanavien verkossa. Yksinkertaisin säätölaite on kaarelle asennettu kaasuventtiili tai ilmanjakolaitteen (tuuletusritilä tai -hajotin) edessä. Myös säätö tapahtuu ilmavirtausventtiilien (KVV) avulla, joka on asennettu joihinkin tuuletus- ja diffuusoriin. Joten on olemassa säädettäviä diffuusoreita, kuten DPU-M (ne ovat myös DVA) - valmistajien ero).

Suunnatun ilmavirran säätö on seuraavanlainen:

Kanavaverkon uloimman haaran ilmanopeus mitataan. Jokainen mittaus on tehtävä viidessä pisteessä (jos kanava on suorakulmainen - neljään kulmaan ja keskellä) ja ota keskiarvo mittaustuloksena. Kuten mittauslaitteen kanavan käytetään useammin Pitot-putkella, jolla on pienin halkaisija mittausanturi, joka työnnetään kanavaan poratun reiän läpi Ø = 6 mm, joka sitten suljetaan erityisellä läppä ullagen. Ilmavirta L (m 3 / h) tai ilmanvaihtojärjestelmän kapasiteetti lasketaan seuraavalla kaavalla:

  • 3600 - muuntokerroin toisen (m / s) ja tunnin (m 3 / h) mukaisesti;
  • v - ilman nopeus (m / s) katsotussa osassa mitattuna anemometrillä;
  • S on poikkipinta-ala (m 2).

Tällöin kaasuventtiili on suljettu, kunnes tarvittava ilman määrä kulkee tämän osan läpi ja mittaus suoritetaan uudelleen;

Jos mittauksen jälkeen ilmeni, että venttiili on liian suljettu, venttiili avautuu ja mittaus suoritetaan uudelleen, kunnes ilmavirtaus on saavutettu;

Kun haaran virtaus on säädetty suunnitteluarvoksi, on tarpeen säätää virtausnopeus haarajakelijoista kauimpana pisteestä. Mittaus tehdään myös viiden osan kohdalla ja keskiarvo otetaan mittaustuloksena. Ominaisuus laskettaessa virtausnopeus diffuusorit on, että tarve ottaa huomioon vapaalle alueelle (Fzh.s.) jakelijan rakentamisen sijasta aukon kokoa tai ritiläkansiston koosta. Fzh.s. jotka yleensä ilmoitetaan jakelijan passissa tai valmistajan luettelossa. Esimerkiksi, yksi yleisimmistä Kattohajottimet 4VA 600x600 (tuottaja - Ventart), se on sama 4APR 600x600 (valmistaja - Arctic) Fzh.s. = 0,086 m 2, huolimatta siitä, että alue näyttäisi olevan 0,6⋅0,6 = 0,36 m 2.

Ilmanopeuden mittaus suoritetaan anemometrillä. Näihin tarkoituksiin käytetään kahdenlaisia ​​anemometrejä: juoksupyörän avulla helpoin ja parhaiten suoriutuva tulos ja Pitot-putki eivät anna tarkkaa mittaustulosta alle 5 m / s nopeuksilla. Ilmanvaihtojärjestelmissä ei ole suositeltavaa suunnitella ilman nopeutta yli 5 m / s kanavassa, ilmajoottoreissa - yli 3 m / s, koska tämä johtaa ei-toivottuun kohinaan. Pitot-putken avulla määritetään lentokoneiden ja alusten nopeus.

Mittaustulokset tallennetaan ilmanvaihtojärjestelmään passin ja luovutettu asiakkaalle yhdessä järjestelmän mittauspisteiden, muoto passin otettavien "täydennysosa avustusta 15 tuotantoa ja hyväksymistä työtä laitteen ilmanvaihtojärjestelmien ja ilmastointi (snip 3.05.01-85)".

Tarve säätää ilmanvaihtojärjestelmään vahvistaa käytännön esimerkki: se on suunniteltu ja asennettu ilmanvaihtojärjestelmä ruokailu suunnittelun toimisto, mutta käyttöönotto ei suoriteta tuotannollisista syistä. Ruokavalion johto päätti käyttää järjestelmää ilman käyttöönottoa. Kun insinöörit-suunnittelijat menivät ruokasalin päällikön toimistoon, he näkivät seuraavan kuvan: tuulettamaan. hilakokoalueen 150h150mm asetetaan kattoon, klo korkeus noin 3m, rapattu paperiarkkeja asiakirjojen pöydälle klo päällikkö painetaan painavia esineitä, ja kun kohteita puhdistetaan, ja levyt ei ollut aikaa kiinni, he menivät Ilmanvaihtosäleikön.

Ilmanvaihdon ja ilmastoinnin asennustöiden valmistusta ja hyväksymistä käsittelevän käsikirjan liite 15 (SNIP 3.05.01-85).

PASSPORT-ilmanvaihtojärjestelmä (ilmastointijärjestelmä)

Alue (työpaja) _______________________________________________________________________

A. Yleisiä tietoja

1. Järjestelmän tarkoitus ____________________________________________________________

2. Järjestelmän laitteiden sijainti __________________________________________

B. Järjestelmän laitteiston tärkeimmät tekniset ominaisuudet

Ilmavirtausnopeus ilmanvaihdossa

Ilman nopeuden määrittäminen kanavassa

  • Laskentamenetelmä
    • Kanavan mitat
    • Suositukset valintaa varten ahtaissa olosuhteissa

Tulevan ilmanvaihtojärjestelmän kehittämiseksi on tärkeää määrittää kanavien mitat, jotka on tehtävä tietyissä olosuhteissa. Hiljattain rakennetussa rakennuksessa on helpompi tehdä tämä suunnitteluvaiheessa, jossa kaikki tekniset verkot ja tekniset laitteet sijaitsevat sääntelyasiakirjojen mukaisesti. Toinen asia, kun kyseessä on jälleenrakennus tai tuotannon tekninen uudelleenkäyttö, on asetettava ilmakanavien reitit ottaen huomioon nykyiset olosuhteet. Kanavien mitat voivat olla suuri rooli, ja niiden oikea laskeminen edellyttää optimaalisen nopeuden säätämistä.

Taulukon ilman nopeus kanavassa.

Laskentamenetelmä

Laitteessa on toinen versio syöttö- ja poistoilmastoinnille, jossa on mekaaninen motivaatio. Se koostuu nykyisten ilmakanavien käyttämisestä uusille ilmanvaihtolaitteille. Myöskään vanhojen putkien virtausnopeuden laskemista ei voida tehdä tutkimusten ja mittausten perusteella.

Yleinen kaava ilmamassan nopeuden arvon laskemiseksi (V, m / s) johdetaan kaavasta tuloilman (L, m3 / h) laskemiseksi kanavaosan (F, m2) koosta riippuen:

L = 3600 x F x V

Huomaa: kerrotaan 3600: lla, jotta ajan yksiköitä (tunteja ja sekuntia) voidaan sovittaa yhteen.

Ilman nopeuden mittausmenetelmä.

Näin ollen virtausnopeuden kaava voidaan esittää seuraavassa muodossa:

Laske olemassa olevan kanavan poikkipinta-ala ei ole vaikea, mutta jos se on laskettava? Tällöin menetelmän valitaan kanavan mitat suositeltavien ilmavirtausnopeuksien mukaan pelastamiseksi. Aluksi laskelmissa olevista kolmesta parametristä tässä vaiheessa yksi # 8211; tämä on tietyn huoneen tuuletukseen tarvittavan ilman seoksen määrä (L, m.cub / h). Se määritellään sääntelykehyksen mukaisesti rakenteen ja sen sisäisten huoneiden tarkoituksesta riippuen. Laskenta suoritetaan kunkin huoneen ihmisten lukumäärän tai vapautuneiden haitallisten aineiden, ylijäämäisen lämmön tai kosteuden mukaan. Tämän jälkeen sinun on otettava ilmavirran alustava arvo kanavissa, voit tehdä tämän käyttäen suositeltujen nopeuksien taulukkoa.

Kanavan mitat

Valittamalla ilmakanavan tyyppi ja olettaen suunnittelunopeuden, on mahdollista määrittää tulevan kanavan poikkileikkaus yllä esitetyillä kaavoilla. Jos se on suunniteltu pyöreään muotoon, halkaisija on helppo laskea:

Ilman kanavien laskeminen ilman tasaiselle jakelulle.

  • D # 8211; pyöreän kanavan halkaisija metreinä;
  • F # 8211; sen poikkileikkauksen alue m.
  • π = 3,14

Seuraavaksi sinun on viitattava sääntelyasiakirjoihin, jotka määrittelevät pyöreiden kanavien vakiomitat, ja valita niiden joukosta lähimpänä laskettua halkaisijaa. Tämä tehdään yhdistämällä ilmastointilaitteiden osia, joiden tuotevalikoima on jo riittävän suuri. On selvää, että SNiP: n uudella halkaisijalla on erilainen poikkileikkaus, joten on tarpeen laskea se uudelleen päinvastaisessa järjestyksessä ja saavuttaa todellisen ilmamassan virtausnopeuden arvo standardikanavassa. Tällöin virtausnopeuden L pitäisi edelleen osallistua laskelmiin vakiona. Tämä menetelmä laskee jokaisen ilmanvaihtojärjestelmän yhden osan ja hajoaminen alueille suoritetaan yhtä muuttumatonta ominaisuutta varten # 8211; ilman määrä (virtaus).

Jos suoritetaan suorakaiteen muotoisen kanavan kanavointi, on tarpeen valita puolien mitat siten, että niiden tuote antaa aikaisemmin lasketun poikkileikkauksen. Tällaisiin kanaviin sovellettava sääntelyrajoitus on yksi:

Tässä parametrit A ja B # 8211; metrin mittasuhteet. Yksinkertaisilla sanoilla normit kieltävät suorakaiteen muotoisten putkilinjojen suorittamisen liian kapealla korkealla tai liian matalalla ja leveällä. Tällaisilla alueilla virtausvastus on liian suuri ja aiheuttaa taloudellisesti perusteettomia energiakustannuksia. Loppu kanavan todellisen ilman nopeuden laskemisesta suoritetaan yllä kuvatulla tavalla.

Takaisin sisältöön

Suositukset valintaa varten ahtaissa olosuhteissa

Ilmastointisuunnitelmien kehittämisessä on noudatettava yhtä sääntöä, joka näkyy myös taulukossa: Järjestelmän jokaisessa osassa ilmavirta tulee kasvaa lähestymällä ilmanvaihtojärjestelmää. Jos laskelmien tulokset antavat nopeusindikaattoreita joillekin osille, jotka eivät ole tämän säännön mukaisia, niin tällainen järjestelmä ei toimi tai todellisissa olosuhteissa virtausnopeuden arvot ovat kaukana lasketuista. Ratkaise ongelma muuttamalla ilmakanavien kokoa ongelma-alueilla pienentävän tai kasvavan suuntaan.

Kaava, jonka avulla ilmaa vaihdetaan moninkertaisesti.

Kun rakennustöitä tehdään teollisuusrakennusten jälleenrakentamiseen tai tekniseen uudelleenkäyttöön, on usein tilanne, jossa ilmanvaihtokanavia ei yksinkertaisesti ole, koska rakennuksen teknisten laitteiden ja putkistojen kylläisyys on liian korkea. Sitten on tarpeen asettaa raidat kaikkein esteettömissä paikoissa tai ylittää lattiat ja seinät useita kertoja. Kaikki nämä tekijät voivat merkittävästi lisätä tällaisten kohtien vastustuskykyä. Se osoittautuu noidankehäksi: pullonkaulojen läpi, sinun täytyy pienentää kokoa ja lisätä nopeutta, mikä nostaa voimakkaasti sivuston vastustusta. Vähennä ilmanopeutta on mahdotonta, koska silloin kanavan mitat kasvavat ja se ei mene tarpeiden mukaan. Tilanne on vähentää tuulettimen tuulettimen mittoja ja lisää kapasiteettia ilmakanavaan useisiin rinnakkaisiin hihomiin.

Jos olemassa olevaa syöttö- tai poistokanavajärjestelmää on väärin käytettävä muihin suorituskykyparametreihin ilman kanssa, on ensin otettava kanavan jokaisen osan kenttämittaukset eri ulottuvuuksin. Sitten, käyttämällä uusia ilman virtausarvoja, määritä todellinen virtausnopeus ja vertaa saadut arvot taulukkoon. Käytännössä suositeltuja nopeuksia voidaan ylittää 3-5 m / s pää-, laimennuskanavilla ja haaroilla. Tulo- ja pakoputkistoissa nopeuden kasvu johtaa melutason nousuun, joten sitä ei voida hyväksyä. Jos nämä ehdot täyttyvät, vanhat ilmakanavat sopivat käytettäväksi sopivan huollon jälkeen.

Ilmanvaihtojärjestelmän kaikkien suoritettujen laskelmien oikeellisuus näyttää käyttöönoton, jonka aikana mittaukset tehdään kanavien ilmanopeudesta erityisten luukkujen avulla.

Myös mittauslaitteiden avulla # 8211; anemometrit # 8211; virtausnopeus tuuletusverkon tulo- tai poistoaukossa mitataan. Jos luvut eivät vastaa laskettuja arvoja, koko järjestelmää säädetään lisäämällä kaasuventtiilejä tai kalvoja.

Kuinka laskea sallittu ilman nopeus kanavassa

Ilmanvaihdon laskennassa ja asennuksessa kiinnitetään paljon huomiota näiden kanavien kautta tulevan raikasta ilmaa. Laskelmissa käytetään vakiokaavoja, jotka heijastavat hyvin poistolaitteiden mittojen, liikkumisnopeuden ja ilmavirtauksen välistä suhdetta. Jotkut normit on määrätty SNiP: issä, mutta useimmilla niistä on suositusmerkki.

Laskentaperiaatteet

Ilmakanavat voivat olla erilaisia ​​materiaaleja (muovi, metalli) ja niissä on eri muodot (pyöreä, suorakulmainen). SNiP säätää vain poistolaitteiden mittoja, mutta ei normalisoida houkuttelevan ilman määrää, koska sen kulutus riippuu huoneen tyypistä ja tarkoituksesta. Tämä parametri lasketaan erityisillä kaavoilla, jotka valitaan erikseen. Normit perustuvat vain sosiaalisiin tiloihin: sairaaloihin, kouluihin, esikoululaitoksiin. Niille on määrätty SNiPs tällaisista rakennuksista. Tässä tapauksessa ei ole olemassa selviä sääntöjä ilmavirran nopeudesta kanavassa. Pakotetun ja luonnollisen tuuletuksen suositellut arvot ja normit ovat vain tyypiltään ja tarkoitukseltaan riippuvaisia, niitä voidaan tarkastella vastaaviin SNiP-laitteisiin. Tämä näkyy seuraavassa taulukossa. Ilman liikkeen nopeus mitataan m / s.

Suositeltu ilmanopeus

Taulukon tietoja voidaan täydentää seuraavasti: luonnollisella ilmanvaihdolla ilmansiirtonopeus ei saa ylittää 2 m / s sen tarkoituksesta riippumatta, minimi sallittu - 0,2 m / s. Muussa tapauksessa kaasuseosta ei päivitetä sisätiloissa. Pakotetulle pakokaasulle suurin sallittu arvo on 8 -11 m / s pääkanavilla. Ylittää nämä normit eivät saa olla, koska se aiheuttaa liian paljon painetta ja vastustusta järjestelmässä.

Laskennan muodot

Kaikkien tarvittavien laskelmien suorittamiseen on tarpeen saada joitain tietoja. Ilman nopeuden laskemiseksi tarvitaan seuraava kaava:

θ - ilman virtausnopeus tuuletuslaitteen putkessa mitattuna m / s;

L - ilmamassavirta (tämä arvo mitataan m 3 / h: ssä) pakokaasuakselin osassa, jolle laskeminen suoritetaan;

F - putkilinjan poikkipinta-ala mitattuna m 2: ssä.

Tämän kaavan mukaan lasketaan ilmavirta kanavassa ja sen todellinen arvo.

Samasta kaavasta voit tulostaa kaikki muut puuttuvat tiedot. Esimerkiksi ilmavirtauksen laskemiseksi kaava on muunnettava seuraavasti:

Joissakin tapauksissa tällaiset laskelmat ovat vaikeita tai riittämättömiä. Tässä tapauksessa voit käyttää erityistä laskinta. Internetissä on monia samankaltaisia ​​ohjelmia. Suunnittelupäälliköille on parempi asentaa erityispiirteitä, joilla on enemmän tarkkuutta (vähennä putken seinämän paksuutta laskettaessa sen poikkipinta-alaa, lisää pi-numeroita, laskee tarkemman ilmavirran jne.).

Ilmaliikenteen nopeuden tunteminen on välttämätöntä, jotta voidaan laskea paitsi kaasuseoksen virtausmäärä, myös määrittää kanavan seinämien dynaaminen paine, kitkahäviöt ja vastustus jne.

Joitakin hyödyllisiä vinkkejä ja kommentteja

Kuten käy ilmi kaavasta (tai laskettaessa laskimissa käytännöllisiä laskelmia), ilman nopeus kasvaa pienemmillä putkien mittoilla. Tosiasiassa on useita etuja:

  • ei tapahdu tiloja eikä tarvetta sijoittaa ylimääräistä ilmanvaihtokanavaa tarvittavan ilmavirran varmistamiseksi, jos huoneen mitat eivät salli suurien kanavien kulkua;
  • On mahdollista sijoittaa pienempiä putkia, jotka useimmissa tapauksissa ovat helpompia ja kätevämpiä;
  • Mitä pienempi kanavan halkaisija, sen halvempi hinta ja lisäelementtien (läpät, venttiilit) hinta pienenevät;
  • pienempi putken koko laajentaa asennusmahdollisuuksia, ne voidaan järjestää tarpeen mukaan, käytännössä ei sovi ulkoisiin rajoitteisiin.

Kuitenkin, kun asetetaan halkaisijaltaan pienemmät ilmakanavat, on muistettava, että kun ilman nopeus nousee, dynaaminen paine putken seiniin kasvaa ja järjestelmän vastus kasvaa, joten tarvitaan voimakkaampia tuulettimia ja lisäkustannuksia. Ennen asennusta on siis välttämätöntä suorittaa kaikki laskelmat huolellisesti, jotta säästöt eivät muutu suuriksi kustannuksiksi tai jopa tappioiksi, koska rakentaminen, joka ei ole SNiP: n normien mukainen, ei saa käyttää.

Ilmanvaihtojärjestelmät: suunnittelu ja laskenta - DIY

Olet siis asiakas. Ja haluat tietää, miten ilmanvaihtojärjestelmän laitteiden valinta tapahtuu.

Laitetta valittaessa lasketaan seuraavat parametrit:

  • Tuottavuus ilmalla;
  • Ilmanlämmitin;
  • Tuulettimen tuottama työpaine;
  • Ilman virtausnopeus ja kanavan poikkipinta-ala;
  • Sallittu melutaso.

Seuraavassa esitellään yksinkertaistettu menetelmä kotimaisissa olosuhteissa käytettävän ilmanvaihtojärjestelmän pääelementtien valitsemiseen.


kulutusilman tai ilman suorituskykyä

Järjestelmän suunnittelu alkaa laskemalla tarvittava tuottavuus ilmalla mitattuna kuutiometreinä tunnissa. Tätä varten tarvitset yksityiskohtaisen tilan pohjapiirustuksen, joka ilmaisee kunkin huoneen ja sen alueen nimet (tehtävät).

Laskenta alkaa määrittämällä vaadittu ilmanvaihtomäärä, joka kertoo, kuinka monta kertaa yhden tunnin kuluessa huoneen täydellinen ilmanvaihto muuttuu. Esimerkiksi huoneen 50 neliömetriä ja 3 metrin korkokorkeuden (tilavuus 150 kuutiometriä) kaksitahtinen ilmakeskus vastaa 300 kuutiometriä tunnissa.

Tarvittava lentoliikenteen taajuus riippuu huoneen tarkoituksesta, ihmisten määrästä ja polttoaineen tuottamiseen käytettävistä laitteista, ja se määräytyy SNiP: n (Building Standards and Rules) mukaisesti.

Esimerkiksi useimmissa asuintiloissa on riittävästi yksittäistä ilmakuljetusta, toimistotiloihin 2-3 kertaa tarvitaan lennonvaihtoa.

Korostamme kuitenkin, että tämä ei ole sääntö. Jos tämä toimistotila on 100 neliömetriä ja se työllistää 50 henkilöä (sanotaan leikkaussali), niin tarvitaan noin 3000 m3 / h ilmanvaihtoa varten.

Vaadittavan kapasiteetin määrittämiseksi on laskettava kaksi ilmanvaihtoväliä: moninaisuudeltaan ja edelleen ihmisten määrä. valitse sitten lisää näistä kahdesta arvosta.

  1. Ilmankeräyksen laskeminen moninaisuudessa:

L - Tarvittava kapasiteetti syöttöilmastointi, m 3 / h;

n - normalisoidun lentoliikenteen kurssi: asuintilojen n = 1, toimistoissa n = 2,5;