OV-INFO.RU

Laskurin avulla voit laskea ilmanvaihtojärjestelmän perusparametreja tuuletusjärjestelmien laskennassa kuvatulla tavalla. Käyttämällä sitä voit määrittää:

  • Järjestelmän suorituskyky, joka palvelee jopa 4 huonetta.
  • Ilmakanavistojen ja ilmajohtoreiden mitat.
  • Ilman verkon kestävyys.
  • Ilmanlämmitin ja sähkön arvioidut kustannukset (sähkölämmitin).

Seuraavassa laskentamalli auttaa sinua selvittämään, miten laskinta käytetään.

Esimerkki ilmanvaihdon laskemisesta laskimella

Tässä esimerkissä osoitamme, kuinka lasketaan 3-huoneen huoneiston, jossa on kolme elämää (kaksi aikuista ja yksi lapsi), toimituksen tuuletus. Iltapäivällä joskus heidän luokseen tulevat sukulaiset, joten olohuoneessa voi olla pitkään jopa viisi henkilöä. Asuntojen enimmäismäärät ovat 2,8 metriä. Huoneparametrit:

Makuuhuoneen ja lapsen kulutusmäärät on asetettu SNiP: n suositusten mukaisesti - 60 m³ / h per henkilö. Olohuoneessa rajoitamme itseämme 30 m³ / h, koska monet huonehenkilöt ovat harvinaisia. SNiP: n mukaan tämä ilmavirta on sallittu luonnollisen tuuletuksen omaaville tiloille (ikkuna voidaan avata ilmanvaihdolle). Jos asetetaan olohuoneen ilman kulutus 60 m³ / h per henkilö, tarvittava kapasiteetti tähän huoneeseen olisi 300 m³ / h. Sähkön hinta tämän ilman määrän kuumentamiseksi olisi erittäin korkea, joten teimme kompromissin mukavuuden ja talouden välillä. Ilmankeräyksen laskemista monista eri huoneista valitsemme miellyttävän kaksoisilmanvaihtoa.

Pääkanava on suorakulmainen jäykkä, oksat - joustava melutaso (tämä ilmakanavien yhdistelmä ei ole yleisin, mutta valitsimme sen esittelykäyttöön). Tuloilman edelleen puhdistamiseksi otetaan käyttöön EU5-hiilipölysuodatin (lasketaan verkon vastus saastuneilla suodattimilla). Ilmakanavien ilmanopeudet ja sallitut melutaso säleillä säilyvät ennallaan kuin suositellut arvot, jotka on asetettu oletusarvoiksi.

Aloitetaan laskenta laatimalla kaavio ilmajärjestelmästä. Tämä piiri antaa meille mahdollisuuden määrittää kanavien pituuden ja kierrosten määrän, jotka voivat olla sekä vaaka- että pystysuorissa tasoissa (meidän on laskettava kaikki käännökset suorissa kulmissa). Joten meidän järjestelmä:

Ilmanjakeluverkon vastus on yhtä suuri kuin pisimmän osan vastus. Tämä jakso voidaan jakaa kahteen osaan: pääkanavaan ja pisin haara. Jos sinulla on kaksi haaraa suunnilleen samaa pituutta, sinun on määritettävä, kenellä on suurin vastustuskyky. Tätä varten voimme olettaa, että yhden kierroksen vastus on yhtä suuri kuin 2,5 metrin resistanssi kanavalla, suurin vastus on haara, jonka arvo (2,5 * kierrosluvun + kanavan pituus) on suurin. Jotta voidaan erottaa kaksi osaa reitistä, on välttämätöntä määrittää eri tyyppiset ilmakanavat ja erilaiset ilmanopeudet pääosalle ja haaroille.

Järjestelmässämme kaikkiin oksistoihin on asennettu tasapainotuskaasut, joiden avulla voit säätää jokaisen huoneen ilmavirtaa mallin mukaisesti. Niiden vastustuskyky (avoimessa tilassa) on jo otettu huomioon, koska tämä on vakioelementti ilmanvaihtojärjestelmästä.

Pääkanavan pituus (ilmanottoaukosta haaraan huoneeseen nro 1) on 15 metriä, tällä alueella on 4 kierrosta suorassa kulmassa. Pituus Tuloilmalaitteeseen ja ilmansuodatin ei voida ottaa huomioon (vastustuskyky tutkitaan erikseen), ja vastus äänenvaimennin voidaan pitää vastuksen ilmakanavan samanpituisia, eli vain laskea se osa pääkanavan. Pisin haaran pituus on 7 metriä, sillä on 3 käännöstä suorassa kulmassa (yksi sivupinnassa, yksi kanavassa ja yksi sovittimessa). Siksi olemme määrittäneet kaikki tarvittavat alustavat tiedot ja nyt voimme edetä laskutoimituksiin (kuvakaappaus). Laskennan tulokset on esitetty taulukossa:

Laskennan tulokset tilojen mukaan

Laskimet ilmanvaihtojärjestelmän parametrien laskemiseen


Asuintilojen osalta vaaditaan vaaditun ilmanvaihdon kapasiteetin laskeminen:

  1. Niiden ihmisten määrä, jotka elävät samaan aikaan huoneessa;
  2. Elintilaa-alueen mukaan;
  3. Paljon lentoliikennettä.

Laskenta ihmisten lukumäärälle perustuu sääntöön: 30 m³ / h per henkilö, jonka pinta-ala on yli 20 m².

Lentoarvonlaskenta ihmisten lukumäärän mukaan (kokonaispinta-ala asukasta kohden yli 20 m²)

Elintila-alueen laskenta perustuu sääntöön: 3 m³ / t 1 m²: n tilan pinta-alasta, ja huoneen kokonaispinta-ala on alle 20 m².

Lämmityksen vaihto huoneen alueella (huoneiston kokonaispinta-ala per henkilö alle 20 m²)

Ilmanvaihtokertoimen laskeminen perustuu moninkertaiseen määrään huoneen ilmamäärän vähimmäismäärän perusteella. Makuuhuoneen, yhteisen huoneen, lapsen huone otetaan 1,0 (SNiP 31-01-2003 Taulukko 9.1).

Ilmankeräyksen laskeminen moninaisuudessa

Suurin kolmesta laskelmasta saadun ilmanvaihtomerkin arvo on vaadittu ilmanvaihtokyky. Ilmanvaihdon tuntemuksen ansiosta voit laskea ilmakanavien minimi poikkileikkauksen. Laskenta tehdään kanavien maksimilonopeuden tilasta - 4 m / s. Suurten arvojen kohdalla ilmamassan liikkeestä voi ilmetä melua.

Kanavan poikkipinta-alan laskeminen

Pienimmän kanavan poikkipinta-alan tuntemus tekee sopivan kanavan koosta yhteen tiivistelmätaulukoista.

Tai teemme riippumattoman laskelman sopivimmasta ilmakanavasta. Voit tehdä tämän käyttämällä alla olevia laskimia.
Tietäen kanavan halkaisijan tai leveyden ja korkeuden, voit laskea sen todellisen poikkileikkauksen ja vertaa sitä laskettuun arvoon.

Pyöreän kanavan todellisen poikkileikkauksen laskeminen

Suorakulmaisen kanavan varsinaisen poikkileikkauksen laskeminen

OV-INFO.RU

Ohjeet ilmanvaihto- ja ilmastointilaitteista

Kalenteri

Tervetuloa!

laskimet

Ilman nopeuden laskeminen kanavassa

Tässä osiossa on online-laskimet suorakulmaisten ja pyöreiden kanavien poikkileikkausten valinnasta.

Syötä kanavan osan nopeus syöttämällä ilmavirran ja kanavan poikkileikkaukset alla olevien muotojen mukaisesti.

Kehitettäessä online-laskimia muiden nopeiden laskelmien osalta osioon OB (Id-kaavio, putkien halkaisijoiden valinta, Kvs jne.).

Copyright © 2014. Kaikki oikeudet pidätetään.
(Sivustoa suunniteltaessa mallia käytetään vapaiden mallipohjien ilmaisilta CSS-malleilta).

Ilmavirran laskentalaskuri

Verkkolaskenta-laskukone tietyissä huoneissa, riippuen käyttötarkoituksesta, valitsee oikean tuuletin suorituskyvyn ja ilmanvaihtoa varten. Puhaltimen suorituskyky lasketaan m 3 / h, riippuen lentokoneen vaihdon taajuudesta toimistossa tai muussa eri suunnassa sijaitsevissa kotitaloustiloissa. Oikea ilmanvaihdon laskenta perustuu oikeaan puhaltimen valintaan, joka sopii sellaisiin parametreihin kuin kapasiteetti pumpun tilavuuden kautta ja mitattuna kuutiometreinä tunnissa. Pääindikaattori on kanavan tuottavuuden laskenta ja ilmanvaihtojaksojen taajuus. Monia ilmastovaihtoehtoja kertoo kuinka monta kertaa ilmaa on vaihdettu huoneeseen tunnin ajan. Alla olevassa taulukossa on esimerkkejä ja ilma-aluksen vaihdon nimikkeistö.

Laskuri ilmanvaihtoa huoneessa

L = n * S * H, missä:

L - tarvittava kapasiteetti m 3 / h;
n on lentoliikenteen moninaisuus;
S on huoneen pinta-ala;
H - huoneen korkeus, m.

Mikä määrää lentoliikenteen taajuuden

Tietyissä arvoissa ilmanvaihto on laskettu normatiivisen monimuotoisuuden mukaan. Tilojen tyypistä huolimatta lentoliikenteen moninkertaisuuden laskemisessa käytettävä kaava on sama:

jossa Vengelsmanni - huoneen tilavuus, m 3;
Kp - tavanomainen ilmanvaihto, 1 / h.

Huoneen tilavuuden tulisi olla tiedossa, kun taas lukujen lukumäärää säännellään normeilla. Näihin kuuluvat rakentamisen normit SNiP 2.08.01-89, hygienia- ja hygieniavaatimukset ja muut.

Kuinka tehdä oikea laskenta ilmakanavien alueelta

Ilmanvaihto on keskeisessä asemassa optimaalisen mikroilmaston luomisessa kotona. Oikein suunniteltu ilmanvaihtojärjestelmä varmistaa pilaantuneen ilman, haitallisten kaasujen, höyryjen ja pölyn poistamisen tilojen ulkopuolella, jotka vaikuttavat asuinalueella asuvien ihmisten terveyteen. Ilmanvaihtojärjestelmien suunnittelussa tehdään valtava määrä laskelmia, joissa otetaan huomioon monet tekijät ja muuttujat.

Ilmanvaihtojärjestelmän suorituskyvyssä ilmakanavilla on tärkeä rooli, nimittäin niiden pituus, poikkileikkaus ja muoto. On erittäin tärkeää, että kanavien poikkileikkauksen laskenta suoritetaan oikein, koska riippuu siitä, antavatko ilmakanavajärjestelmän riittävän ilman, ilman virtauksen ja ilmanvaihtojärjestelmän häiriöttömän toiminnan kokonaisuudessaan. Ilmakanava-alueen pätevän laskennan vuoksi ilmavirtojen tuottama tärinä ja aerodynaaminen kohina ovat sallitun normin mukaisia.

Voit laskea ilmakanavan alueen luonnolliselle ilmanvaihtojärjestelmälle kolmella tavalla:

  • Hae ammattilaisille. Laskenta tehdään laadullisesti, mutta kalliiksi.
  • Tee itsenäinen laskelma käyttämällä kaavoja, joilla lasketaan erityiset ilman häviöt, gravitaatioventtiili, ilmakanavien poikkileikkaus, kaavamenetelmä ilmamassan liikkumisnopeudelle savuissa, kitkamäärien ja resistanssin määritys.
  • Käytä online-laskinta.

Jotta voit käyttää online-laskinta, sinun ei tarvitse olla insinöörikoulutusta tai maksamaan rahaa, kirjoita tarvittavat tiedot kussakin laskentakentässä ja saavu- daksesi oikean tuloksen.

Kanavien poikkileikkausten itsenäisen laskennan menetelmä

  1. Ilmakanavan aerodynaamisten ominaisuuksien määrittäminen luonnollisella ilmavirralla.

Pgr - painovoima poistoilmajärjestelmän kanavissa, Pa;

L - alueen arvioitu pituus, m.

Luonnon motivaatio välttämätön yhteys parametrit painovoiman paineita virtauskanavia parantaminen indikaattoreita kitka ja paikallisen vastuksen, jotka tapahtuvat tiellä ilmavirran huppu suun imu akselit, eli yhtälö 1, jossa Σ (RLN + Z) - laskettu painehäviö paikallisen vastuksen ja kitkan pituus ilmakanavista lasketun ilmamassan liikkeen suuntaan.

  1. Painovoiman veden määrän määrittäminen

h - ilmapylvään korkeus m;

pn - ilmamassan tiheys huoneen ulkopuolella, kg / m3,

pb - ilmamassan tiheys huoneessa.

  1. Kanavan poikkipinta-ala määritellään kaavalla

S - arvioitu kanavan poikkipinta-ala cm 2

L - ilmavirta kanavan läpi, m 3 / h

V - ilmamäärän nopeus kanavassa, m / s,

2 788 - kerroin mittojen sopimiseksi.

  1. Kanavien todellinen poikkipinta-ala määritellään kaavalla:

S = π * D / 400 - pyöreille kanaville

S = * B / 100 suorakaiteen muotoisille kanaville

S - todellinen poikkipinta-ala, cm 2

D - pyöreän kanavan halkaisija, mm

ja B - suorakulmaisen putken leveys ja korkeus, mm.

  1. Kanavaverkon vastuksen laskemiseksi käytä kaavaa:

R - erityiset kitkamäärät tuuletusverkon tietyssä osassa

L - kanavan pituus.

Ei - kanavan osan paikallisten tappioiden kertoimien summa

V2 - ilmansiirron nopeus kanavaosassa

Ilmakanavien laskeminen

Ennen ilmanvaihtojärjestelmien asennusta on tarpeen laskea kanavan pinta-ala. Kazanissa voit tehdä sen itse lähteä kotiin. Huolellinen suunnittelu ennen ostamista ja asennusta säästää turhista jätteistä ja tarpeettomista hermoista. Korkeasti koulutettujen asiantuntijoiden aika on kallis, joten ei ole toivottavaa, että ilmanvaihtojärjestelmän asennus keskeytyy materiaalien tai komponenttien puutteen takia.

Siksi tarkka lasketaan Kazanin ilmakanavan alue hyödyttää varovaisia ​​ja kaukonäköisiä asiakkaita. Helppokäyttöinen ja hyvin intuitiivinen laskin auttaa sinua tekemään aluetta laskettaessa kanavan Kazanin itse, ja näet lopulliset kustannukset ilmanvaihtokanavien ja varusteet tarvitaan asentamisen ilmanvaihtojärjestelmän.

Kuinka laskea huoneiston talojen luonnollinen ilmanvaihto?

Kerrostalossa tai huoneistossa olevien järjestettyjen ilmakeskusten tehtävänä on poistaa ylimääräinen kosteus ja jätekaasut ja korvata se raikkaalla ilmalla. Näin ollen poistolaitteen ja virtauslaitteen osalta on tarpeen määrittää poistettavan ilmamassan määrä - laske ilmanvaihto erikseen jokaiseen huoneeseen. Laskentamenetelmät ja ilmavirtaukset otetaan yksinomaan SNiP: n mukaisesti.

Normatiivisten asiakirjojen terveysvaatimukset

Ilmanvaihtojärjestelmästä toimitetuista mökitiloista toimitetun ja poistetun ilman vähimmäismäärää säännellään kahdella perusasiakirjalla:

  1. "Asuinkerrostalot" - SNiP 31-01-2003, kohta 9.
  2. "Lämmitys, ilmanvaihto ja ilmastointi" - SP 60.13330.2012, pakollinen lisäys "K".

Ensimmäisessä asiakirjassa esitetään asuinrakennusten asuinrakennusten ilmanvaihtoa koskevat terveys- ja hygieniavaatimukset. Käytetään kahdenlaisia ​​mittoja: ilmamassavirta tilavuusyksikköä kohti (m³ / h) ja tunneittain.

Ohje. Ilmakuljetuksen moninaisuus ilmaistaan ​​luvulla, joka kertoo kuinka monta kertaa tunnin sisällä huoneen ilmastoympäristö päivitetään kokonaan.

Ilmaus - alkeellinen tapa uudistaa happea asunnossa

Huoneen tarkoituksesta riippuen syöttö- ja poistoilmastoinnissa on oltava seuraava virtausnopeus tai ilman seoksen päivitysten määrä (monimuotoisuus):

  • olohuone, lastenhuone, makuuhuone - 1 tunti tunnissa;
  • keittiö, jossa sähköliesi - 60 m³ / h;
  • kylpyhuone, wc, wc - 25 m³ / h;
  • kiinteän polttoaineen kattilan uunissa ja keittiössä, jossa on kaasuliesi, laitteiston käytön aikana tarvitaan moninkertaista 1 plus 100 m³ / h;
  • kattilahuone, jossa on maakaasua polttava lämmöntuottaja - kolminkertainen uusiminen sekä palamisen edellyttämä ilman määrä;
  • ruokakomero, vaatehuone ja muut apulaitteet - moninaisuus 0,2;
  • kuivaus tai pyyhintä - 90 m³ / h;
  • kirjasto, toimisto - 0,5 kertaa tunnissa.

Huom. SNiP mahdollistaa yleisen ilmanvaihdon aiheuttaman taakan keventämisen joutokäynnillä tai ihmisten puutteella. Asuinrakennuksissa monimuotoisuus laskee 0,2: een, tekniseen - 0,5: een. Vaatimus huoneisiin, joissa kaasukäyttöiset tilat sijaitsevat, säilyy ennallaan, - ilmatietojen tuntikohtainen uusiminen joka tunti.

Luonnollisen luonnoksen aiheuttamien haitallisten kaasujen päästöt ovat halvin ja helpoin tapa päivittää ilmaa

Asiakirjan kohdassa 9 ymmärretään, että pakokaasuvolyymi on yhtä suuri kuin virtausmäärä. JV 60.13330.2012 -standardin vaatimukset ovat hieman yksinkertaisempia ja riippuvat huoneessa oleskelevien henkilöiden lukumäärästä vähintään 2 tuntia:

  1. Jos 1 asukkaan huoneistossa on vähintään 20 m², huoneissa on tuore virtaus 30 m³ / h 1 henkilöä kohden.
  2. Tuloilman määrä lasketaan alueittain, kun asukasta kohden on vähemmän kuin 20 neliötä. Suhde on seuraava: asunnon 1 m2: n osalta toimitetaan 3 m3: n sisäänvirtaus.
  3. Jos huoneistossa ei ole tuuletusta (ei ikkunoita ja ikkunoita), jokaiselle henkilölle on annettava 60 m³ / h puhdasta seosta riippumatta neliöstä.

Kahden eri asiakirjan edellä mainitut sääntelyvaatimukset eivät ole lainkaan ristiriidassa keskenään. Ilmanvaihdon yleisen vaihtojärjestelmän suorituskyky lasketaan alun perin SNiP 31-01-2003 "Asuinrakennukset" mukaisesti.

Tulokset on sovitettu säännöstön "Ilmanvaihto ja ilmastointi" vaatimusten kanssa ja tarvittaessa korjataan. Seuraavassa analysoimme laskentalgoritmia yksikerroksisen talon esimerkissä, joka esitetään piirustuksessa.

Ilmavirtauksen määrittäminen moninaisuudelta

Tyypillinen tulo- ja poistoilmoituksen laskenta tehdään erikseen jokaisessa huoneistossa tai maalaistalossa. Ilmamassavirran selvittäminen rakennuksessa kokonaisuutena saadaan yhteenvetona saaduista tuloksista. Melko yksinkertaista kaavaa käytetään:

  • L - tarvittava syöttö- ja poistoilmamäärä, m³ / h;
  • S - huoneen neliö, jossa ilmanvaihto lasketaan, m²;
  • h - kattojen korkeus, m;
  • n - huoneen ilmasto-olosuhteiden päivitysten määrä 1 tuntiin (SNiP säätelee).

Esimerkki laskelmasta. Yhden kerroksisen rakennuksen olohuoneen pinta-ala on 3 metrin korkeudeltaan 15,75 m². SNiP 31-01-2003 vaatimusten mukaan asumistilojen monimuotoisuus n on yhtä suuri kuin yksi. Tällöin ilmaseoksen tuntivelvo on L = 15,75 x 3 x 1 = 47,25 m³ / h.

Tärkeä asia. Keittiöstä poistetun ilmaseoksen määrän määrittäminen kaasuliesiin riippuu asennetusta ilmanvaihtolaitteesta. Yleinen järjestelmä näyttää tältä: sääntöjen mukainen ainoa vaihto tapahtuu luonnollisen ilmanvaihdon avulla ja lisäksi 100 m³ / h heittää kotitalouksien liesituuletin.

Samanlaisia ​​laskelmia tehdään kaikille muille huoneille, kehitetään ilmastoverkon (luonnollinen tai pakotettu) järjestely ja tuuletuskanavien mitat määritetään (ks. Alla oleva esimerkki). Prosessin automatisointi ja nopeuttaminen auttavat laskentaohjelmaa.

Online-laskin auttaa

Ohjelma käsittelee vaaditun ilmamäärän SNiP: n sääntelemän moninaisuuden mukaan. Valitse vain huonetyyppi ja kirjoita sen mitat.

Huom. Kaasulämmöntuotantolaitteiden kattiloissa laskin ottaa huomioon vain kolminkertaisen vaihtoasteen. Tulokseen lisätään polttoaineelle menevä raitisilman määrä.

Selvitämme lentoliikenteen asukkaiden määrän perusteella

JV 60.13330.2012 liite "K" määrittelee huoneen ilmanvaihdon yksinkertaisimman kaavan mukaisesti:

Tuloksena on esitetty esitetty kaava:

  • L on vaadittu tulo (pakokaasu), m³ / h;
  • m - puhtaan seoksen tilavuus 1 henkilöä kohden, lisäyksessä "K" olevassa taulukossa ilmoitettu, m³ / h;
  • N - ihmisten määrä, jotka ovat jatkuvasti tässä huoneessa 2 tuntia päivässä tai enemmän.

Toinen esimerkki. On kohtuullista olettaa, että yhden kerroksen talossa on kaksi perheenjäsentä pitkään. Koska ilmanvaihto on järjestetty ja jokaiselle vuokralaiselle on yli 20 neliötä, parametrin m oletetaan olevan 30 m³ / h. Tarkastellaan sisäänvirtausta: L = 30 x 2 = 60 m³ / h.

Se on tärkeää. Huomaa, että tulos on suurempi kuin moninkertaisuuden (47,25 m³ / h) määrittämä arvo. Lisälaskelmissa on otettava huomioon luku 60 m³ / h.

Laskennan tulokset paranee välittömästi rakennuksen pohjapiirroissa

Jos asunnossa asuvien ihmisten määrä on niin suuri, että jokainen henkilö kohdennetaan alle 20 m² (keskimäärin), edellä olevaa kaavaa ei voida käyttää. Säännöt osoittavat, että tässä tapauksessa olohuoneen ja muiden huoneiden pinta-ala on kerrottava 3 m³ / h. Koska asunnon kokonaispinta-ala on 91,5 m², ilmanvaihdon arvioitu tilavuus on 91,5 x 3 = 274,5 m³ / h.

Tilavissa huoneissa, joissa on korkeat katot (3 metrin etäisyydeltä), ilmakehän uudistamista tarkastellaan kahdella tavalla:

  1. Jos huoneessa asuu usein suuri joukko ihmisiä, laske tuloilman kuutioprosentti 30 m3 / h: n tarkkuudella yhdelle henkilölle.
  2. Kun kävijöiden määrä muuttuu jatkuvasti, otetaan käyttöön 2 metrin korkeudelta lattiasta huolletun alueen käsite. Määritä tämän tilan määrä (kerro alue 2: llä) ja anna tarvittava monikerta, kuten edellisessä kappaleessa on kuvattu.

Esimerkkilaskenta ja ilmanvaihto

Pohjimmekin piirrettävä yksityisen talon ulkoasu, jonka sisäinen pinta-ala on 91,5 m² ja korkeus 3 m. Kuinka lasketaan koko rakennuksen hoodin / sisäänvirtauksen määrä SNiP-tekniikan mukaan:

  1. Etäilman määrä olohuoneesta ja makuuhuoneesta, jolla on tasainen kvadratuuri, on 15,75 x 3 x 1 = 47,25 m³ / h.
  2. Lastenhuoneessa: 21 x 3 x 1 = 63 m³ / h.
  3. Keittiö: 21 x 3 x 1 + 100 = 163 m³ / h.
  4. Kylpyhuoneessa on 25 m³ / h.
  5. Yhteensä 47,25 + 47,25 + 63 + 163 + 25 = 345,5 m³ / h.

Huom. Ilmanvaihtoa käytävällä ja käytävällä ei ole standardoitu.

Ulkoisen ilmansyötön järjestelmä ja haitallisten kaasujen päästöt maatilan huoneista

Nyt tarkistamme tulokset toisen normatiivisen asiakirjan noudattamiseksi. Koska talossa asuu 4 hengen perhe (2 aikuista + 2 lasta), olohuoneessa, makuuhuoneessa ja lastentarhassa pitkään kaksi henkilöä. Laske uudelleen näiden huoneiden ilmanvaihto henkilöiden lukumäärän mukaan: 2 x 30 = 60 m³ / h (kussakin huoneessa).

Vauvakuoren tilavuus täyttää vaatimukset (63 kuutiota tunnissa), mutta makuuhuoneen ja olohuoneen arvot on säädettävä. Kaksi ihmistä ei riitä 47,25 m³ / h, ota 60 kuutiota ja kertoo jälleen koko ilmankuljetus: 60 + 60 + 63 + 163 + 25 = 371 m³ / h.

On yhtä tärkeää jakaa ilman virtaus rakennuksessa oikein. Yksityisissä mökeissä on tavallista järjestää luonnolliset ilmanvaihtojärjestelmät - on paljon halvempaa ja helpompaa asentaa sähköpuhaltimia ilmakanavilla. Lisätään vain yksi elementti haitallisten kaasujen pakottamisesta - keittiön huppu.

Esimerkki ilmakeskuksesta yhden tarinan talossa

Miten järjestää virtojen luonnollinen virtaus:

  1. Kaikkien asuinympäristöjen syöttö tapahtuu ikkunoiden profiilin sisään asennetuilla automaattisilla venttiileillä tai suoraan ulkoseinään. Loppujen lopuksi standardimuoviset ikkunat ovat ilmatiivis.
  2. Keittiön ja kylpyhuoneen välisessä osuudessa järjestämme kolmesta pystysuorasta akselista, jotka avautuvat katolle.
  3. Sisäovien alla tarjoamme aukkoja, joiden pituus on enintään 1 cm.
  4. Asennetaan keittiön huppu ja yhdistetään se erilliseen pystysuuntaiseen kanavaan. Hän ottaa osan kuormasta - poista 100 kuutiometriä jätekaasua yhden tunnin aikana ruoanlaittoon. Jäljelle jää 371 - 100 = 271 m³ / h.
  5. Kaksi akselia päätämme ristikot kylpyhuoneessa ja keittiössä. Putken mitat ja korkeus lasketaan tämän oppaan viimeisessä osassa.
  6. Kahden kanavan luonnollisen luonnoksen vuoksi ilma kulkee lastentarhasta, makuuhuoneesta ja salista käytävään ja sitten pakoputkille.

Huomaa: ulkoasun mukaiset tuoreet virrat lähetetään huoneilta, joissa on puhdasta ilmaa saastuneisiin alueisiin, minkä jälkeen ne lähetetään kaivosten läpi.

Lisätietoja luonnollisen ilmanvaihdon järjestämisestä on videossa:

Laske poistokanavien halkaisijat

Muut laskelmat ovat hieman monimutkaisempia, joten seuraamme jokaisessa vaiheessa esimerkkejä laskelmista. Tuloksena on yksiportaisen rakennuksen tuuletusakselien halkaisija ja korkeus.

Koko pakokaasun tilavuus jaettiin 3 kanavalle: 100 kuutiometriä. Vahvistaa kaapin keittiössä kytkentäkauden aikana, loput 271 kuutiometriä lähtee samasta kaivoksesta luonnollisella tavalla. Virtaus 1 kanavan läpi on 271/2 = 135,5 m³ / h. Putkiosan pinta-ala määritellään kaavalla:

  • F - ilmanvaihtokanavan poikkipinta-ala, m²;
  • L - pakokaasuvirta akselin läpi, m³ / h;
  • ʋ - virtausnopeus, m / s.

Ohje. Tuuletusaukkojen ilmanopeus on alueella 0,5-1,5 m / s. Laskennallisena arvona otetaan keskiarvo 1 m / s.

Kuinka laskea yhden putken poikkileikkaus ja halkaisija esimerkissä:

  1. Etsi halkaisijan koko neliömetreinä F = 135.5 / 3600 x 1 = 0.0378 m².
  2. Ympyrän alueen koululausekkeesta määritämme kanavan halkaisija D = 0,22 m. Valitaan lähin suurin ilmakanava vakiosarjasta Ø225 mm.
  3. Jos puhutaan tiilikaivoksesta seinän sisällä, tuuletuskanavan koko 140 x 270 mm (hyvä sattuma, F = 0.378 neliömetriä) sopii löytyneelle osalle.
Tiilikivi on tiukasti mitoitettu - 14 x 14 ja 27 x 14 cm

Pakoputken halkaisija kotimaiselle pakokaasulle katsotaan samalla tavalla, vain puhallinpumpulla virtaavan virtauksen nopeus otetaan enemmän - 3 m / s. F = 100/3600 х 3 = 0,009 m² tai Ø110 mm.

Valitaan putkien korkeus

Seuraava vaihe on määrittää pakokaasun sisällä oleva vetovoima tietystä korkeuseroista. Parametria kutsutaan käytettävissä olevaksi painovoimaksi ja ilmaistaan ​​Pascalsissa (Pa). Laskentakaava:

  • p on kanavan painovoima paine, Pa;
  • H - korkeusero tuuletusraudan ulostulon ja katon yläpuolella olevan ilmanvaihtokanavan poikki, m;
  • рвздд - tilan tiheys, oletamme 1,2 kg / m³ talon lämpötilassa +20 ° С.

Laskentamenetelmä perustuu vaaditun korkeuden valintaan. Ensinnäkin päätä, kuinka halukas nostat huppuja katon yli vaikuttamatta rakennuksen ulkonäköön, ja korvaa sitten korkeusarvon kaavassa.

Esimerkki. Ota korkeusero 4 m ja saada työntöpaine p = 9,81 x 4 (1,27 - 1,2) = 2,75 Pa.

Nyt tulee vaikein vaihe - aeronaattinen laskenta laukaisukanavista. Tehtävä on selvittää kanavan vastus kaasujen virtaukseen ja verrata tulosta käytettävissä olevaan päähän (2,75 Pa). Jos painehäviö on suurempi, putkea on lisättävä tai suurennettava halkaisijan läpi.

Kanavan aerodynaaminen vastus lasketaan kaavalla:

  • Δp - akselin kokonaispainehäviö;
  • R on kulkevan virtauksen kitkakohtainen vastustuskyky, Pa / m;
  • H - kanavan korkeus, m;
  • Σξ on paikallisten vastusten kertoimien summa;
  • Pv - dynaaminen paine, Pa.

Esitämme esimerkin avulla, kuinka vastusarvoa tarkastellaan:

  1. Dynaamisen paineen arvo löytyy kaavasta Pv = 1,2 x 1 2/2 = 0,6 Pa.
  2. Laske kitkakestävyys R = 0,1 / 0,225 x6 = 0,27 Pa / m.
  3. Pakokaasuakselin paikallinen vastus on säleikkö ja 90 ° ulostulo. Näiden tietojen kertoimet ξ ovat vakioarvot, jotka ovat vastaavasti 1,2 ja 0,4. Summa ξ = 1,2 + 0,4 = 1,6.
  4. Lopullinen laskelma: Δp = 0,27 Pa / m × 4 m + 1,6 x 0,6 Pa = 2,04 Pa.

Huom. 1 m / s laskennassa kerrottujen kertoimien ja ilmanopeuksien arvoja voidaan käyttää akseleiden halkaisijasta riippumatta, jotka olet määrittänyt aiemmin.

Nyt verrataan laskennallista päätä, joka muodostuu ilmajohdossa ja saatu vastus. Koska p = 2,75 Pa on suurempi kuin painehäviöllä Δp = 2,04 Pa, 4 metriä korkea kaivos toimii kunnolla luonnolliseen pakokaasuun ja tuottaa vaaditun pakokaasuvirtauksen.

Miten yksinkertaistaa tehtävää - vinkkejä

Voisit olla varma, että laskelmat ja järjestelyt ilmanvaihtoa varten ovat monimutkaisia ​​asioita. Yritimme selittää metodologiamme helposti saatavilla olevassa muodossa, mutta laskelmat näyttävät silti hankalilta keskimääräiselle käyttäjälle. Anna joitakin suosituksia ongelman yksinkertaistetusta ratkaisusta:

  1. Ensimmäisten kolmen vaiheen täytyy aina mennä läpi - selvittää ulosvedetyn ilman määrä, kehittää virtauskuvio ja laskea poistokanavojen halkaisijat.
  2. Virtausnopeuden ei tulisi ylittää 1 m / s ja määritettävä kanavien poikkileikkaus. Aerodynamiikkaa ei tarvitse päästä eroon - vie ilmakanavat vähintään 4 metrin korkeudelle aurinkosäleistä.
  3. Rakennuksen sisällä yrittää käyttää muoviputkia - sileiden seinämien ansiosta ne eivät käytännössä kestä kaasujen liikkumista.
  4. Ventkanaly, joka on kylmällä ullakolla, on eristettävä.
  5. Puhaltimien ei pitäisi estää kaivosten tuloksia, kuten tavanomaisissa asunnoissa on. Juoksupyörä ei anna normaalia toimintaa luonnolliselle poistoimelle.

Sisäänrakennukseen asennetaan huoneisiin säädettävät seinäventtiilit, päästä eroon kaikista halkeamista, joissa kylmä ilma pääsee käsiksi taloon.

Ilman kanavien online-laskimen laskeminen

laskin

Ilmakanavien ja muotoiltujen tuotteiden laskennassa voit laskea kaikkien tuotantotilojen tai laitosten määrittelyn. Saatavana olevat pyöreät ja suorakulmaiset galvanoidun ja mustan teräksen ilmakanavat sekä erilaiset muotoilutuotteet.

Laske kustannukset ja kerää määrittely kahdella tavalla:

  • käyttäen vain pinta-alaa;
  • käyttämällä kaikkia muuttujia klikkaamalla "Tiedän elementin mitat".

Pinta-alan käyttö

Materiaalista, paksuudesta, poikkileikkauksesta ja alueesta riippuen laskin laskee yksikkökustannukset neliömetriltä.

Käytä kaikkia muuttujia klikkaamalla "Tiedän elementin koon"

Laskin laskee kunkin yksittäisen elementin kustannukset tarkasti elementin materiaalin, paksuuden, osan ja lisäparametrien mukaan (korkeus, leveys, pituus jne.).

Käytä painiketta "Laske" - lisätäksesi useita eri elementtejä määrittelyyn. Voit tallentaa spesifikaation tai lähettää sen sähköpostitse.