OV-INFO.RU

Mikroilmastoindikaattoreiden parametrit määritellään GOST 12.1.2.1002-00, 30494-96, SanPin 2.2.4.548, 2.1.2.1002-00 määräysten mukaisesti. Nykyisten hallituksen määräysten perusteella kehitettiin käytännesäännöt SP 60.13330.2012. Ilman nopeus kanavalla olisi varmistettava olemassa olevien normien täytäntöönpano.

Mitä otetaan huomioon ilman nopeuden määrittämisessä

Laskelmien oikea toteutus edellyttää, että suunnittelijoiden on täytettävä useita säänneltyjä ehtoja, joista jokaisella on yhtä tärkeä merkitys. Mitkä parametrit riippuvat ilmavirran nopeudesta?

Melutaso huoneessa

Tilojen erityisestä käytöstä riippuen terveysvaatimukset asettavat seuraavat enimmäisäänenpainetasot.

Taulukko 1. Melutason enimmäisarvot.

Parametrien ylittäminen on sallittua vain lyhytaikaisessa tilassa ilmanvaihtojärjestelmän tai lisälaitteiden käynnistämisen / pysäytyksen aikana.
Tärinätaso huoneessa Puhaltimien toiminnan aikana syntyy tärinää. Tärinäindikaattorit riippuvat ilmakanavien valmistuksesta, tärinänvaimennustiivisteiden laadusta ja laadusta sekä ilmavirtauskanavien nopeudesta. Yleiset tärinäindikaattorit eivät voi ylittää valtion organisaatioiden asettamia rajoja.

Taulukko 2. Sallitun tärinän enimmäisarvot.

Laskelmissa valitaan optimaalinen nopeus ilman nopeutta, joka ei paranna värähtelyprosesseja ja niihin liittyviä äänen värähtelyjä. Ilmanvaihtojärjestelmän on säilytettävä tietty mikroilmasto tiloissa.

Taulukossa ilmoitetaan virtausnopeuden, kosteuden ja lämpötilan arvot.

Taulukko 3. Mikroilmastoparametrit.

Virtausnopeuden laskennassa huomioon otettu toinen indikaattori on ilmanvaihtojärjestelmissä tapahtuva ilmanvaihto. Niiden käytön vuoksi terveysvaatimukset asettavat seuraavat vaatimukset ilmanvaihtoa varten.

Taulukko 4. Useiden huoneiden ilmanvaihto.

Laskentalgoritmi Kanavan kanavan ilmanopeus määritetään ottaen huomioon kaikki edellä mainitut olosuhteet, asiakkaan on määritettävä tekniset tiedot ilmanvaihtojärjestelmien suunnittelussa ja asennuksessa. Tärkein kriteeri virtausnopeuden laskemiseksi on vaihdon moninaisuus. Kaikki muut hyväksynnät tehdään muuttamalla ilmakanavien muotoa ja poikkileikkausta. Virtausnopeus voidaan ottaa taulukosta riippuen kanavan nopeudesta ja halkaisijasta.

Taulukko 5. Ilmankulutus, riippuen virtausnopeudesta ja kanavan halkaisijasta.

itsearviointi

Esimerkiksi huoneessa, jonka tilavuus on 20 m 3 saniteettitasojen vaatimusten mukaisesti tehokkaaseen ilmanvaihdolle, on välttämätöntä aikaansaada kolmivaiheinen ilmanvaihto. Tämä tarkoittaa, että vähintään yhden tunnin kanavan läpi on läpäistävä vähintään L = 20 m 3 × 3 = 60 m 3. Virtausnopeuden laskentakaava on V = L / 3600 × S, jossa:

V - ilmavirran nopeus m / s;

L - ilmavirta m 3 / h;

S on kanavien poikkipinta-ala m 2: ssä.

Ota pyöreä ilmakanava Ø 400 mm, poikkipinta-ala on:

Esimerkissämme S = (3,14 x 0,4 2 m) / 4 = 0,12256 m 2. Näin ollen, jotta saadaan haluttu useita ilmanvaihdon (60 m 3 / h) on pyöreä kanava 400 mm (S = 0,1256 m 3) ilman virtausnopeus on yhtä suuri kuin: V = 60 / (0,1256 x 3600) ≈ 0,13 m / s.

Saman kaavan avulla, ennalta määrätyllä nopeudella, on mahdollista laskea kanavien välissä liikkuvan ilman tilavuus yksikköajan mukaan.

L = 3600 × S (m 3) × V (m / s). Tilavuus (kulutus) saadaan neliömetreinä.

Kuten aiemmin on kuvattu, ilmanvaihtojärjestelmien melutaso riippuu ilman nopeudesta. Tämän ilmiön negatiivisen vaikutuksen minimoimiseksi insinöörit laskivat suurimman sallitun ilmanopeuden eri huoneissa.

Taulukko 6. Suositeltavat ilmanopeusparametrit

Sama algoritmi määrittää kanavan ilmavirtauksen laskettaessa lämpöä, asettaa toleranssit talvikauden talvikauden tappioiden minimoimiseksi ja valitsee puhaltimet teholla. Ilmavirtaustietoja tarvitaan myös painehäviön pienentämiseksi, mikä mahdollistaa ilmanvaihtojärjestelmien tehon ja vähentää sähköenergian kulutusta.

Laskenta suoritetaan kullekin yksittäiselle osalle, ottaen huomioon saadut tiedot, halkaisijan ja geometrian päälinjojen parametrit valitaan. Heidän on voitava siirtää evakuoitu ilma kaikista yksittäisistä huoneista. Ilmakanavien halkaisija on valittu siten, että häiriö- ja vastushäviöt minimoidaan. Kinemaattisen järjestelmän laskemiseksi kaikki kolme ilmanvaihtojärjestelmän parametria ovat tärkeitä: pumpattavan / poistetun ilman maksimimäärä, ilmamassojen liikkumisnopeus ja ilman kanavien halkaisija. Ilmanvaihtojärjestelmien laskemista koskevat työt on luokiteltu tekniikan näkökulmasta vaikeiksi, vain erikoistumiskoulutuksen ammattilaiset voivat suorittaa ne.

Seuraavien kaavojen käyttäminen kanavien eri poikkileikkauskanavien nopeuden säätämiseksi:

Lopullisten tietojen laskennan jälkeen otetaan tavalliset putkilinjat lähimpään arvoon. Tästä johtuen laitteiden kiinnitysajankohta lyhenee ja sen säännöllinen huolto ja korjaus yksinkertaistetaan. Toinen plus on ilmanvaihtojärjestelmän arvioitu kustannusten pieneneminen.

Asuin- ja teollisuuslaitosten ilmanlämmitystä varten nopeudet säädetään ottaen huomioon jäähdytysnesteen lämpötila tulo- ja poistoaukkoissa, jotta lämmin ilma virtaa tasaisesti, asennusjärjestelmä ja ilmanvaihtosäleiden mitat harkitaan. Nykyaikaiset ilmalämmitysjärjestelmät tarjoavat mahdollisuuden säätää virtausten nopeutta ja suuntaa automaattisesti. Ilman lämpötila ei saa ylittää + 50 ° C pistorasiasta, etäisyys työpaikoista on vähintään 1,5 m. Ilmamassan nopeutta säätelevät nykyiset tilastandardit ja teollisuustoimet.

Laskelmien aikana asiakkaiden pyynnöstä voidaan ottaa huomioon mahdollisuudet asentaa muita haarakonttoreita, ja tätä tarkoitusta varten saadaan aikaan laitteiston tuottavuus ja kanavakapasiteetti. Virtausnopeudet lasketaan siten, että ilmanvaihtojärjestelmien kapasiteetin lisäämisen jälkeen ne eivät aiheuta ylimääräistä äänikuormaa huoneessa oleville ihmisille.

Halkaisijoiden valinta tehdään minimiin hyväksyttävinä, sitä pienemmät mitat - yleinen ilmanvaihtojärjestelmä, halvempaa valmistaa ja asentaa se. Paikalliset imujärjestelmät lasketaan erikseen, ne toimivat sekä itsenäisesti että voidaan liittää olemassa oleviin ilmanvaihtojärjestelmiin.

Valtion sääntelyasiakirjoissa asetetaan suositeltu liikkumisnopeus riippuen ilmakanavien sijainnista ja määräpaikasta. Laskettaessa sinun on noudatettava näitä parametrejä.

Taulukko 7. Suositeltavat ilmanopeudet eri kanavissa

Laskin ilmanvaihdon komponenttien laskemiseen ja valitsemiseen

Laskurin avulla voit laskea ilmanvaihtojärjestelmän perusparametreja tuuletusjärjestelmien laskennassa kuvatulla tavalla. Käyttämällä sitä voit määrittää:

  • Järjestelmän suorituskyky, joka palvelee jopa 4 huonetta.
  • Ilmakanavistojen ja ilmajohtoreiden mitat.
  • Ilman verkon kestävyys.
  • Ilmanlämmitin ja sähkön arvioidut kustannukset (sähkölämmitin).

Seuraavassa laskentamalli auttaa sinua selvittämään, miten laskinta käytetään.

Esimerkki ilmanvaihdon laskemisesta laskimella

Tässä esimerkissä osoitamme, kuinka lasketaan 3-huoneen huoneiston, jossa on kolme elämää (kaksi aikuista ja yksi lapsi), toimituksen tuuletus. Iltapäivällä joskus heidän luokseen tulevat sukulaiset, joten olohuoneessa voi olla pitkään jopa viisi henkilöä. Asuntojen enimmäismäärät ovat 2,8 metriä. Huoneparametrit:

Makuuhuoneen ja lapsen kulutusmäärät on asetettu SNiP: n suositusten mukaisesti - 60 m³ / h per henkilö. Olohuoneessa rajoitamme itseämme 30 m³ / h, koska monet huonehenkilöt ovat harvinaisia. SNiP: n mukaan tämä ilmavirta on sallittu luonnollisen tuuletuksen omaaville tiloille (ikkuna voidaan avata ilmanvaihdolle). Jos asetetaan olohuoneen ilman kulutus 60 m³ / h per henkilö, tarvittava kapasiteetti tähän huoneeseen olisi 300 m³ / h. Sähkön hinta tämän ilman määrän kuumentamiseksi olisi erittäin korkea, joten teimme kompromissin mukavuuden ja talouden välillä. Ilmankeräyksen laskemista monista eri huoneista valitsemme miellyttävän kaksoisilmanvaihtoa.

Pääkanava on suorakulmainen jäykkä, oksat - joustava melutaso (tämä ilmakanavien yhdistelmä ei ole yleisin, mutta valitsimme sen esittelykäyttöön). Tuloilman edelleen puhdistamiseksi otetaan käyttöön EU5-hiilipölysuodatin (lasketaan verkon vastus saastuneilla suodattimilla). Ilmakanavien ilmanopeudet ja sallitut melutaso säleillä säilyvät ennallaan kuin suositellut arvot, jotka on asetettu oletusarvoiksi.

Aloitetaan laskenta laatimalla kaavio ilmajärjestelmästä. Tämä piiri antaa meille mahdollisuuden määrittää kanavien pituuden ja kierrosten määrän, jotka voivat olla sekä vaaka- että pystysuorissa tasoissa (meidän on laskettava kaikki käännökset suorissa kulmissa). Joten meidän järjestelmä:

Ilmanjakeluverkon vastus on yhtä suuri kuin pisimmän osan vastus. Tämä jakso voidaan jakaa kahteen osaan: pääkanavaan ja pisin haara. Jos sinulla on kaksi haaraa suunnilleen samaa pituutta, sinun on määritettävä, kenellä on suurin vastustuskyky. Tätä varten voimme olettaa, että yhden kierroksen vastus on yhtä suuri kuin 2,5 metrin resistanssi kanavalla, suurin vastus on haara, jonka arvo (2,5 * kierrosluvun + kanavan pituus) on suurin. Jotta voidaan erottaa kaksi osaa reitistä, on välttämätöntä määrittää eri tyyppiset ilmakanavat ja erilaiset ilmanopeudet pääosalle ja haaroille.

Järjestelmässämme kaikkiin oksistoihin on asennettu tasapainotuskaasut, joiden avulla voit säätää jokaisen huoneen ilmavirtaa mallin mukaisesti. Niiden vastustuskyky (avoimessa tilassa) on jo otettu huomioon, koska tämä on vakioelementti ilmanvaihtojärjestelmästä.

Pääkanavan pituus (ilmanottoaukosta haaraan huoneeseen nro 1) on 15 metriä, tällä alueella on 4 kierrosta suorassa kulmassa. Pituus Tuloilmalaitteeseen ja ilmansuodatin ei voida ottaa huomioon (vastustuskyky tutkitaan erikseen), ja vastus äänenvaimennin voidaan pitää vastuksen ilmakanavan samanpituisia, eli vain laskea se osa pääkanavan. Pisin haaran pituus on 7 metriä, sillä on 3 käännöstä suorassa kulmassa (yksi sivupinnassa, yksi kanavassa ja yksi sovittimessa). Siksi olemme määrittäneet kaikki tarvittavat alustavat tiedot ja nyt voimme edetä laskutoimituksiin (kuvakaappaus). Laskennan tulokset on esitetty taulukossa:

Laskennan tulokset tilojen mukaan

Menetelmä ilman nopeuden laskemiseksi kanavassa

Kanavien ulkoisten mittojen määrittämiseksi sinun on tiedettävä niiden poikkileikkauksen arvo, joka lasketaan kanavan ilmavirtauksesta ja sen liikkeen nopeudesta riippuen. Laskenta ja optimaalisen nopeuden valinta kussakin paikassa vaikuttavat suoraan koko ilmanvaihtojärjestelmän oikeaan toimintaan. Nopeuden lasketut arvot ilmakanavien verkon asennuksen ja käyttöönoton jälkeen tarkistetaan mittauksilla erityislaitteiden avulla.

Ilmakanava on eri materiaaleista koostuvien putkien järjestelmä, joka asennetaan huoneisiin erottamaan ja jakamaan ilmaa niiden yli ja vetämään niitä ilman.

Ensimmäiset laskentatiedot

Koko ilmanvaihtojärjestelmä on sijoitettu erillisiin osiin ja optimaalinen ilman seoksen nopeus määritetään jokaiselle. Yksi ominaisuus, joka erottaa yhden paikan toiselta, on ilman (virtauksen) määrä. Jos tämä arvo on muuttumaton, ei ole tarpeen asettaa putkistojen ilmanvaihtoverkkoa osiin. Laskelman ydin on seuraava:

Ilman kanavien laskeminen ilman tasaiselle jakelulle.

  1. Määritä virtausnopeuden arvioitu arvo.
  2. Laske ympyränmuotoisen tai suorakaiteen muotoisen ilmakanavan mitat, vertaa niitä SNiP: n vakiokokoisiin.
  3. Jos mitat poikkeavat normoiduista, noudata sarjan lähintä normatiivista arvoa ja suorita laskelmat päinvastaisessa järjestyksessä ilmavirran todellisen nopeuden määrittämiseksi.

Taulukossa on esitetty vakiomallit halkaisijalta millimetreinä pyöreitä kanavia:

Suorakulmaisten ilmakanavien sääntelyvaatimukset ovat hieman yksinkertaisemmat: kanavan korkeuden ja leveyden suhde ei saa olla yli 6: 3. Käytännössä tämä tarkoittaa sitä, että ei ole mahdollista tuottaa putkia, jotka ovat liian kapeita suurelle leveydelle, kuten 700x100 mm. Tällaisella kanavalla on erittäin suuri vastustuskyky, ja sen käytön aikana sallittu melutaso ylittyy, koska liikaa leveä osa alkaa värähtelemään ilmavirran vaikutuksesta sisäpuolelta. Tässä tapauksessa suhde on 7, joka ei vastaa normeja, ja kanava 600x100 mm, jonka suhde on 6 sivua, sallitaan. Mutta tässäkin tapauksessa leveä puoli on kiristettävä, varsinkin suurilla ilmamassoilla. Tällöin suoritetaan rigae tai diagonaali, jossa on tietty piki.

Ohjeita laskelmien suorittamiseen

Kaava, jonka avulla ilmaa vaihdetaan moninkertaisesti.

Kaavan laskemisessa käytetty ilman virtausnopeus putkessa yhdistää ilmavirran tämän osan (L, m? / H), koko kanavan poikkileikkaus (F, m) ja arvo itse nopeus (V, m / s ):

Merkitys ilma seos määrä ilmaistaan ​​kuutiometriä 1 tunnin ajan, ja nopeus - metriä sekunnissa, joten esillä olevassa kuvassa kaava 3600 yhdistää väliaikainen muuttujat tunnetaan, 1 tunti - 3600 sekuntia. Virtausnopeuden laskemiseksi kaava näyttää tältä:

Ilmajohdinosan mitat lasketaan kokoonpanon mukaan. Jos kanavan muoto on pyöreä, poikkileikkaus määritellään seuraavasti:

F = (πxD 2) / 4 tai F = πxr 2.

Edellä olevissa kaavoissa:

  • D on pyöreän kanavan halkaisija metreinä;
  • r on pyöreän kanavan säde metreinä;
  • π = 3,14.

Toinen parametri, joka osallistuu peruskaavaan, on tämän osan syöttö- tai uuttomäärien määrä. Tämä arvo on otettu huomioon, kun otetaan huomioon huoneen sisäänvirtauksen tai vedenpoiston tarve. Se voidaan määrittää tämäntyyppisten tilojen voimassaolevien määräysten mukaisesti tai laskelmissa, joissa kohdennetaan erilaisia ​​haitallisia, palavia tai räjähtäviä aineita huoneen sisällä. Tällaisten laskelmien suorittamisen jälkeen ilmavirta muuttuu vakioarvoksi. Tuuletusjärjestelmää kehitettäessä voidaan muuttaa vain muuta 2 parametria, nopeutta ja poikkileikkausta, kokonaisvirta pysyy muuttumattomana.

Nykyisten järjestelmien parametrien määrittäminen

Kaava ilmanpuhdistuslaitteiden poikkileikkauksen määrittämiseksi.

Usein on olemassa tarve laskea olemassa olevien tuuletuskanavien läpijuoksu, johon kuuluu ilman nopeuden määrittäminen. Tämä tapahtuu teollisten rakennusten jälleenrakentamisen aikana uuden teknologian käyttöönoton tai tuotannon teknisen uudelleenkäytön vuoksi. Tällöin sisäänvirtauksen tai louhinnan kysyntä voi muuttua suunnassa tai toisessa, sinun on tehtävä päätös, vanhat ilmakanavat sopivat tähän tarkoitukseen tai uudet asennukset on asennettava. Kun määritetään uusi ilmamäärän tarve tuotannolle, on tarpeen mitata näiden kanavien mitat tai löytää ne rakennuksen suunnitteluasiakirjoissa. Tämä on kuitenkin usein mahdotonta useista syistä, joten sinun on tehtävä mittauksia.

Sen jälkeen peruskaava, joka annetaan edellä, laskee todelliset ilmavirtausnopeudet nykyisessä ilmanvaihtojärjestelmässä. Saatuja tuloksia voidaan verrata suositeltuun ilman nopeuteen kanavassa, ne ovat 2-8 m / s. On huomattava, että nämä indikaattorit eivät ole pakollisia, normatiivisissa asiakirjoissa (SNiP 41-01-2003) tämä ei ole kiinteä. Jos ne osoittautuvat liian korkeiksi (yli 15 m / s), on otettava huomioon kaksi ratkaisua:

Pyöreiden kanavien poikkileikkauksen laskentataulukko.

  1. Jätä nykyiset ilmakanavat. Sitten on tarpeen toteuttaa toimenpiteitä niiden vahvistamiseksi ja tiukentamiseksi. Vertailukohtana: valmisteilla järjestelmissä imuvirtausnopeus nousee 20-40 m / s, joten sinun täytyy tutkia tällaisten järjestelmien asennuksen ja vahvistamista nykyisiä kanavia ovat samanlaisia ​​jopa korvaaminen joidenkin osien tai muotoisia elementtejä.
  2. Vaihda putket. Ratkaisu on optimaalinen tulevaisuuden ilmanvaihtoverkolle, mutta se lisää rahoituskustannuksia.

Myös käänteisiä tilanteita on, kun laskujen seurauksena ilmavirta olemassa olevassa verkossa on erittäin alhainen (0,5-2 m / s). Tämä ei ole ongelma, jos suuret mittasuhteet eivät häiritse uusien prosessilaitteiden asennusta ja toimintaa. Sitten ne jäävät sellaisenaan, vain ilmanvaihtoyksikkö muuttuu tai vanha modernisoidaan. Tämä ratkaisu tuo säästöjä, koska ilmajohtojen verkko on jo käytettävissä. Lisäksi pienillä nopeuksilla se on pieni vastus, joka mahdollistaa vähemmän tehokkaan tuulettimen käytön.

Ilman nopeuden laskeminen putkistoissa voidaan tarkistaa järjestelmän asennuksen jälkeen. Tämä tehdään erityisten mittauslaitteiden - anemometrien avulla. Laitteen anturi viedään ilmavirtaan putken teknisen luukun läpi tuulettimen toiminnan aikana. Mittarilukemia verrataan laskettuun nopeuteen ja tarvittaessa tehdään säätöjä kaasun venttiilien toiminnalle. Nämä laitteet voivat limittyä kanavaväliin vaimentimen avulla ja siten luoda keinotekoinen virtausvastus.

Ilmavirtausnopeuden laskennassa tulisi saavuttaa kanavan poikkipinta-alan nopeuden / koon parametrien optimaalinen suhde.

Tämä mahdollistaa rahan käyttämisen älykkäästi sekä järjestelmän asennuksen ja käyttöönoton aikana että sen jatkotoimenpiteiden aikana.

Ilmakanavien aerodynaaminen laskenta

Ilmakanavien aerodynaaminen laskenta - yksi ilmanvaihtojärjestelmän suunnittelun päävaiheista, tk. sen avulla voit laskea kanavan poikkileikkauksen (halkaisija - pyöreälle ja korkeudelle suorakulmaisen leveyden mukaan).

Kanavan poikkipinta-ala valitaan tämän tapauksen suositellun nopeuden mukaan (riippuu laskevan osan ilmavirtauksesta ja sijainnista).

F = G / (ρ · v), m2

jossa G - ilman virtaus putken laskennallisessa osassa, kg / s
ρ - ilman tiheys, kg / m³
v - Suositeltu ilman nopeus, m / s (katso taulukko 1)

Taulukko 1. Mekaanisen ilmanvaihtojärjestelmän suositeltavan ilmanopeuden määrittäminen.

Luonnollisella tuuletusjärjestelmällä ilman nopeuden oletetaan olevan 0,2-1 m / s. Joissakin tapauksissa nopeus voi nousta 2 m / s.

Kaava painehäviöiden laskemisessa, kun ilmavirtaus kanavalla tapahtuu:

ΔP = ΔPtr + ΔPm.s. = λ · (l / d) · (v2 / 2) · ρ + Σξ · (v2 / 2) · ρ, [Pa]

Yksinkertaistetussa muodossa kaavan mukainen ilmanpainehäviö näyttää tällä tavoin:

ΔP = Rl + Z, [Pa]

Erityiset kitkapaineen menetykset voidaan laskea kaavalla:
R = λ · (l / d) · (v2 / 2) · ρ, [Pa / M]

l - kanavan pituus, m
Z - painehäviö paikallisissa resistansseissa, Pa
Z = Σξ · (v2 / 2) · ρ, [Pa]

Erityinen painehäviö kitkalle R voidaan myös määrittää taulukon avulla. Riittää tietää ilman virtaus alueella ja kanavan halkaisija.

Taulukko erityisistä putkiston kitkapainehäviöistä.

Taulukon ylempi luku on ilmavirtaus ja alempi luku on erityinen painehäviö kitkan (R) osalta.
Jos kanava on suorakaiteen muotoinen, taulukossa olevia arvoja etsitään vastaavan halkaisijan mukaan. Vastaava halkaisija voidaan määrittää seuraavalla kaavalla:

d eq = 2ab / (a ​​+ b)

jossa ja b - kanavan leveys ja korkeus.

Taulukossa on esitetty erityinen painehäviö, jonka ekvivalenttinen karheuskerroin on 0,1 mm (kerroin teräsputkille). Jos kanava on valmistettu toisesta materiaalista, taulukon arvoja tulee säätää seuraavan kaavan mukaan:

ΔP = Rpl + Z, [Pa]

jossa R - Erityinen kitkapainehäviö
l - kanavan pituus, m
Z - Painehäviö paikallisissa vastuksissa, Pa
β - Korjauskerroin ottaen huomioon kanavan karheus. Sen arvo voidaan ottaa alla olevasta taulukosta.

On myös otettava huomioon paikallisen resistenssin paineen aleneminen. Paikallisten resistanssien kertoimet ja painehäviöiden laskentamenetelmä voidaan ottaa taulukosta artikkelista "Painehäviöiden laskeminen ilmanvaihtojärjestelmän paikallisessa resistanssissa. Paikallisen vastuksen kertoimet "Dynaaminen paine määritetään erityisten kitkapainehäviöiden taulukosta (taulukko 1).

Määritä ilmakanavien mitat luonnollinen luonnos, Käytetään käytettävissä olevan paineen arvoa. Kertakäyttöinen paine - tämä on paine, joka syntyy syöttö- ja poistoilman lämpötilan, toisin sanoen, Painovoima.

Ilmanvaihtokanavien mitat luonnollisessa tuuletusjärjestelmässä määritetään käyttämällä yhtälöä:

jossa ΔPdIS - käytettävissä oleva paine, Pa
0,9 - voimansiirtoaste kasvaa
n on laskettujen haaran kanavien lukumäärä

Ilmanvaihtojärjestelmällä, jossa on mekaaninen ilmamotivaatio, ilmakanavat valitaan suositellulla nopeudella. Lisäksi painehäviöt lasketaan lasketulla haaraliitännällä ja tuuletin valitaan valmiiden tietojen (ilman virtaus ja painehäviö) mukaan.

Ilman nopeus kanavassa: laskelmat ja mittaukset

Jokainen ilmanvaihtoverkko koostuu kanavista, laitteista ja muotoisista elementeistä. Tarvittavan ilmanvaihtoa varten tärkeä parametri ei ole ainoastaan ​​syöttö- ja pakojärjestelmien kapasiteetti ja verkon kokoonpano, vaan myös ilmakanavien aerodynaaminen laskenta.

Materiaalin ja osan muoto

Ensimmäinen asia, joka tehdään suunnittelun valmisteluvaiheessa, on materiaalin valinta ilmakanaville, niiden muoto, koska kun kaasut hankautuvat kanava-seiniä vasten, ne syntyvät. Jokaisella materiaalilla on erilainen karkeus sisäpinnasta, joten kanavien valinnassa ilmavirran liikkumiskestävyys on erilainen.

Riippuen asennus yksityiskohtia laatuun ja ilman seos, joka liikkuu järjestelmän läpi ja budjetti teosten valittu ruostumattomasta teräksestä, muovista tai päällystettyä terästä sinkitty kanavia, pyöreä tai suorakulmainen poikkileikkaus.

Suorakaideputkia käytetään useimmiten hyödyllisen tilan säilyttämiseen. Pyöreät päinvastoin ovat melko hankalia, mutta niillä on paremmat aerodynaamiset parametrit ja sen seurauksena suunnittelun melu. Ilmanvaihtoverkon asianmukaisen rakenteen kannalta tärkeät parametrit ovat ilmakanavien poikkipinta-ala, ilman virtaus ja sen nopeus kanavan kulkiessa.

Vaikutuksen muoto ei vaikuta siirrettävien ilmamassojen määrään.

Kaasujen liikkumisen ominaisuudet

Kuten edellä mainittiin, ilmastoinnin rakentamisessa suoritetuissa laskelmissa on kolme parametria: ilmamassan virtaus ja nopeus sekä ilmakanavien pinta-ala. Näistä parametreista vain yksi normalisoidaan - tämä on poikkileikkausalue. Asuintilojen ja lasten laitosten lisäksi ilmavirtauskanavassa SNiP ei ole säännelty.

Referenssikirjallisuudessa on olemassa suosituksia ilmanvaihtoverkkoihin virtaavien kaasujen liikkumisesta. Arvot suositellaan käyttötarkoituksen, erityisolosuhteiden, mahdollisten painehäviöiden ja kohinakuvien perusteella. Taulukko heijastaa suositeltuja tietoja pakotetuille tuuletusjärjestelmille.

Luonnolliselle tuuletukselle oletetaan, että kaasujen liike on 0,2-1 m / s.

Laskentamenetelmä

Laskelmien suorittamiseen käytetty algoritmi on seuraava:

  • Axonometrinen kaavio on koottu kaikkien elementtien luetteloon.
  • Järjestelmän perusteella lasketaan kanavien pituus.
  • Virtaus kussakin sen osassa määritetään. Jokaisessa erillisessä osassa on yksi ainoa ilmakanavien osa.
  • Tämän jälkeen lasketaan lentoliikenteen ja paineen nopeus jokaisessa järjestelmän yksittäisessä osassa.
  • Seuraavaksi lasketaan kitkahäviöt.
  • Käyttämällä vaadittua kerrointa lasketaan paikallisen resistenssin painehäviö.

Laskennan aikana ilmajohtoverkon jokaisessa osassa saadaan erilaisia ​​tietoja, jotka on tasattava suurimman vastuksen haarojen kanssa kalvojen avulla.

Laskentamenetelmä

Aluksi on välttämätöntä laskea kanavan tarvittava leikkausalue virtauksen tietojen perusteella.

  • Kanavan poikkipinta-ala lasketaan kaavalla

LP - tiedot vaaditun ilman tilavuudesta tietyllä alueella.

VT - Suositeltu tai sallittu ilmanopeus ilmakanavassa tiettyyn tarkoitukseen.

  • Saadut vaaditut tiedot, tehdään valinta ilmavirran koosta lähelle suunnitteluarvoa. Uusien tietojen avulla lasketaan kaasun liikkeen todellinen nopeus ilmanvaihtojärjestelmän osassa kaavan mukaisesti:

LP - kaasuseoksen virtausnopeus.

ff - valitun ilman kanavan todellinen poikkipinta-ala.

Samanlaisia ​​laskelmia on tehtävä jokaisen ilmanvaihtoaukon osalle.

Ilman nopeuden laskemiseksi kanavassa on välttämätöntä ottaa huomioon kitkamuutokset ja paikalliskestävyys. Yksi häiriöitä vaurioittavista parametreista on kitkakerroin, joka riippuu ilmatiemateriaalin karheudesta. Kitkakertoimia koskevat tiedot löytyvät vertailukirjallisuudesta.

Kitkamäärien laskeminen

Ensinnäkin on otettava huomioon ilmakanavan muoto ja materiaali, josta se on tehty.

  • Pyöreille tuotteille laskentakaava näyttää tältä:

X - taulukoitu kitkakerroin (riippuu materiaalista);

minä - ilmakanavan pituus;

D - kanavan halkaisija;

V - kaasujen liikkumisnopeus tietyssä verkon osassa;

Y - kuljetettavien kaasujen tiheys (taulukkojen perusteella);

Tärkeää! Jos ilmansyöttöjärjestelmässä käytetään suorakaiteen muotoisia kanavia, kaavassa on korvattava suorakulmion (kanavaosan) sivujen vastaava halkaisija. Laskelmat voidaan tehdä kaavalla: d eq = 2AB / (A + B). Käännettäessä voit käyttää alla olevaa taulukkoa.

  • Paikallisvastuksen häviöt lasketaan kaavalla:

Q - paikallisen vastuksen tappioiden kertoimien summa;

V - ilmavirran nopeus verkko-osassa;

Y - kuljetettavien kaasujen tiheys (taulukkojen perusteella);

Tärkeää! Ilmanjakeluverkkojen rakentamisen kannalta erittäin tärkeä rooli on oikea valinta lisäelementeistä, joihin kuuluvat: ristikot, suodattimet, venttiilit jne. Nämä elementit luovat vastustuskykyä ilmamassojen liikkumiselle. Projektia luotaessa kiinnität huomiota laitteiden asianmukaiseen valintaan, koska tuulettimen siivet ja kosteudenpoistimien ja ilmankostuttimien toiminta aiheuttavat resistanssin lisäksi suurimman melun ja vastustuskyvyn ilmavirtauksiin.

Ilmanjakojärjestelmän häviöiden laskeminen, kun tiedetään tarvittavat parametrit kaasujen liikkumisesta kussakin sen osassa, voit siirtyä ilmanvaihtolaitteiden valintaan ja järjestelmän asentamiseen.

Nykyisen ilmanvaihtojärjestelmän säätö

Suurin tapa tunnistaa ilmanvaihtoverkkojen toiminta on mitata kanavan ilmavirta, koska kanavien halkaisijan tuntemisen avulla on helppo laskea todellinen ilmamassavirta. Tähän tarkoitetut välineet kutsutaan anemometreiksi. Riippuen ilmamassan liikkeiden ominaisuuksista, sovelletaan:

  • Mekaaniset laitteet, joissa on juoksupyörä. Mittausraja 0,2 - 5 m / s;
  • Kannen anemometrit mittaavat ilman virtauksen välillä 1-20 m / s;
  • Sähköisiä lämpöanemometrejä voidaan käyttää mittauksiin kaikissa ilmanvaihtoverkossa.

Näissä laitteissa kannattaa asua tarkemmin. Elektroniset lämpöanemometrit eivät edellytä analogisten laitteiden käyttöä, kuten luukkujen järjestämistä kanavissa. Kaikki mittaukset tehdään asentamalla anturi ja hankkimalla tietoja laitteeseen rakennetulle näytölle. Tällaisten laitteiden mittausvirheet eivät ylitä 0,2%. Useimmat nykyaikaiset mallit voivat toimia joko paristoilla tai 220 V: n virtalähteellä. Siksi käyttöönottoa varten ammattilaiset suosittelevat sähköisiä anemometrejä.

Yhteenvetona: ilmavirtauksen, ilman virtauksen ja kanavien poikkipinta-ala ovat tärkeimmät parametrit ilmanjako- ja ilmanvaihtoverkkojen suunnittelulle.

Vinkki: Tässä artikkelissa havainnollistavana esimerkkinä on esitetty aerodynaamisen laskennan menetelmä ilmanvaihtojärjestelmän hengitysteiden osaan. Tietojenkäsittelytoimintojen suorittaminen on melko monimutkainen prosessi, joka vaatii tietoa ja kokemusta sekä ottaen huomioon paljon vivahteita. Älä tee sitä itse, mutta luottaa siihen ammattilaisille.

Laskimet ilmanvaihtojärjestelmän parametrien laskemiseen


Asuintilojen osalta vaaditaan vaaditun ilmanvaihdon kapasiteetin laskeminen:

  1. Niiden ihmisten määrä, jotka elävät samaan aikaan huoneessa;
  2. Elintilaa-alueen mukaan;
  3. Paljon lentoliikennettä.

Laskenta ihmisten lukumäärälle perustuu sääntöön: 30 m³ / h per henkilö, jonka pinta-ala on yli 20 m².

Lentoarvonlaskenta ihmisten lukumäärän mukaan (kokonaispinta-ala asukasta kohden yli 20 m²)

Elintila-alueen laskenta perustuu sääntöön: 3 m³ / t 1 m²: n tilan pinta-alasta, ja huoneen kokonaispinta-ala on alle 20 m².

Lämmityksen vaihto huoneen alueella (huoneiston kokonaispinta-ala per henkilö alle 20 m²)

Ilmanvaihtokertoimen laskeminen perustuu moninkertaiseen määrään huoneen ilmamäärän vähimmäismäärän perusteella. Makuuhuoneen, yhteisen huoneen, lapsen huone otetaan 1,0 (SNiP 31-01-2003 Taulukko 9.1).

Ilmankeräyksen laskeminen moninaisuudessa

Suurin kolmesta laskelmasta saadun ilmanvaihtomerkin arvo on vaadittu ilmanvaihtokyky. Ilmanvaihdon tuntemuksen ansiosta voit laskea ilmakanavien minimi poikkileikkauksen. Laskenta tehdään kanavien maksimilonopeuden tilasta - 4 m / s. Suurten arvojen kohdalla ilmamassan liikkeestä voi ilmetä melua.

Kanavan poikkipinta-alan laskeminen

Pienimmän kanavan poikkipinta-alan tuntemus tekee sopivan kanavan koosta yhteen tiivistelmätaulukoista.

Tai teemme riippumattoman laskelman sopivimmasta ilmakanavasta. Voit tehdä tämän käyttämällä alla olevia laskimia.
Tietäen kanavan halkaisijan tai leveyden ja korkeuden, voit laskea sen todellisen poikkileikkauksen ja vertaa sitä laskettuun arvoon.

Pyöreän kanavan todellisen poikkileikkauksen laskeminen

Suorakulmaisen kanavan varsinaisen poikkileikkauksen laskeminen

Ilman nopeuden laskeminen kanavassa

Ilman nopeuden laskeminen kanavassa on välttämätöntä ilmanvaihtoa varten. Koska ilmakanavat ovat yksi ilmanvaihtojärjestelmän tärkeimmistä osista, ilman nopeuden laskenta määrää, onko huoneen tuuletus riittävä vai päinvastoin liiallinen.

Ilman nopeuden laskemiseksi kanavassa on erityisiä kaavoja. Tämän kaavan avulla voit selvittää, mikä nopeus vaaditaan jokaisessa huoneessa. Tärkeintä on tehdä kaikki laskelmat huolellisesti. Lue lisää laskimella virheiden välttämiseksi.

Myös asianmukaisen ilmanvaihdon noudattamiseksi on noudatettava useita sääntöjä:

  • Ilmakanavan on sallittava tietty ilmavirta, riippumatta ulkoisista tekijöistä.
  • Ilmanvaihdon tulisi säilyttää vähimmäisäänitaso.
  • Tuuletuksen tiiviys takaa tarvittavan ilmavirtauksen.
  • Ilman nopeus ei saa olla liian suuri. Jos tunnet vedon, ilmanvaihtoa tulisi pienentää.

Oikea ilmanopeuden laskenta varmistaa, että ilmanvaihto täyttää kaikki vaatimukset. Täältä voit ostaa kaiken tarvitsemasi ilmanvaihtoon sekä erilaisiin laitteisiin ja materiaaleihin: pneumaattiset niitit, ruokaletkut, kompressoriöljy ja paljon muuta.

© Copyright 2005-2011 GreneKramp

Pietari, ul.Klyuchevaya,. 30, toimisto 304(812) 655-70-27, (812) 655-70-28

Ilmakanavien laskeminen

Kanavien laskeminen tai ilmanvaihtojärjestelmien suunnittelu

Optimaalisen sisäilman mikroilmaston luomisessa tuuletus on tärkein rooli. Se on suurelta osin se, että se tarjoaa kodikkuuden ja takaa huoneen ihmisten terveyden. Luoma ilmanvaihtojärjestelmä päästä eroon monista ongelmista, joita syntyy suljetussa huoneessa: ilmansaasteet pareittain haitallisia kaasuja, pölyä, orgaanista ja epäorgaanista alkuperää, ylimääräistä lämpöä. Kuitenkin Edellytys virheettömään toimivuuteen ilmanvaihdon ja ilmanlaadun on vahvistettu jo kauan ennen käyttöönottoa esineen tai pikemminkin vaiheessa ilmanvaihdon projektin. Ilmanvaihtojärjestelmien suorituskyky riippuu ilmakanavien koosta, puhaltimien voimasta, lentoliikenteen nopeudesta ja tulevan moottoritien muista parametreistä. Suunnittelusta ilmanvaihtojärjestelmän on välttämätöntä suorittaa suuri määrä insinöörin laskutoimitukset, joissa otetaan huomioon paitsi kerrosala, korkeus sen katto, mutta myös monia muita vivahteita.

laskelma ilmakanavien poikkipinta-ala

Kun olet määrittänyt tuuletuskapasiteetin, voit laskea ilmakanavien mitat (poikkipinta-ala).

Kanavien alueen laskenta määräytyy vaaditun virtauksen tiedot, syötetään huoneeseen ja kanavan suurimmalle sallitulle ilman virtausnopeudelle. Jos sallittu virtausnopeus on normaalia korkeampi, se johtaa paineen alenemiseen paikallisille resistansseille sekä pitkin pituutta, mikä johtaa sähkön kustannusten nousuun. Myös ilmakanavien poikkipinta-alan oikea laskeminen on välttämätöntä, jotta aerodynaamisen melun ja tärinän taso ei ylitä normia.

Laskettaessa, huomaa, että jos valitset laajalla alueella kanavan, ilman nopeus pienenee, myönteinen vaikutus vähentämiseen aerodynaamista melua sekä sähkön hintaa. Mutta sinun täytyy tietää, että tässä tapauksessa kanavan kustannukset itse ovat korkeammat. Kuitenkin "hiljaisten" suurten poikkileikkausten pienenopeuksiset ilmakanavat eivät ole aina mahdollisia, koska on vaikea sijoittaa ne kattoon. Korkeuden pienentämiseksi välitilaan mahdollistaa käytön suorakaidekanavien, jotka ovat samalla poikkipinta-ala on pienempi korkeus kuin pyöreä (esim., Pyöreä kanava, jonka halkaisija 160 mm on sama poikkipinta-ala kuin suorakulmainen koko 200 x 100 mm). Samanaikaisesti pyöreiden joustavien kanavien verkon asentaminen on helpompaa ja nopeampaa.

Siksi kanavien valinnassa valitaan usein vaihtoehto, joka soveltuu parhaiten sekä asennuksen helpottamiseksi että taloudellisen toteutettavuuden kannalta.

Kanavan poikkipinta-ala määritetään kaavalla:

Sc = L * 2,778 / V, jossa

sc - arvioitu kanavan poikkipinta-ala, cm²;

L - ilman virtaus kanavan läpi, m³ / h;

V - ilmanopeus kanavassa, m / s;

2778 - kerroin eri ulottuvuuksien yhteensovittamisesta (tunnit ja sekunnit, metrit ja senttimetrit).

Lopputulos saadaan neliösenttimetreinä, koska tällaisissa yksiköissä se on helpompi havaita.

Kanavan todellinen poikkipinta-ala määritetään kaavalla:

S = π * D² / 400 - pyöreille kanaville,

S = A * B / 100 - suorakulmaisille kanaville, joissa

S - kanavan todellinen pinta-ala, cm²;

D - pyöreän kanavan halkaisija, mm;

ja B - suorakulmaisen putken leveys ja korkeus, mm.

Kanavaverkon vastuksen laskeminen

Kun olet laskenut ilmakanavien poikkipinta-alan, on tarpeen määrittää painehäviöt ilmanvaihtoverkossa (kuivatusverkon vastus). Verkon suunnittelussa on otettava huomioon ilmanvaihtolaitteiden painehäviöt. Kun ilma liikkuu hengitysteitse, se kokee resistenssin. Tämän vastuksen voittamiseksi tuulettimen on tuotava tietty paine, joka mitataan Pascalsissa (Pa). Tuloilma-asennuksen valitsemiseksi meidän on laskettava tämä verkon vastus.

Verkko-osan vastuksen laskemiseksi käytetään kaavaa:

Jos R on erityinen painehäviö kitkan suhteen verkon osiin

L - kanavan osan pituus (8 m)

Ei on kanavajakson paikallisten tappioiden kertoimien summa

V on kanavapaikan ilman nopeus (2,8 m / s)

Y on ilman tiheys (otamme 1,2 kg / m3).

R: n arvot määritetään viitteellä (R - kanavan halkaisijan arvolla osassa d = 560 mm ja V = 3 m / s). Ei - riippuen paikallisen resistenssin tyypistä.

Esimerkkinä verkon kanavan ja vastuksen laskemisen tulokset on esitetty taulukossa: