Kuinka tehdä ilmanvaihdon laskenta: kaavat ja esimerkki syöttö- ja pakojärjestelmän laskemisesta

Sanoitko, että talossa oli terve mikroilmasto, eikä kosteutta ja kosteutta missään huoneessa ollut? Taloon oli todella mukava, vaikka suunnitteluvaiheessa on tarpeen suorittaa toimivaltainen laskenta ilmanvaihtoa.

Jos talonrakentamisen aikana tämä tärkeä kohta jätetään huomiotta, tulevaisuudessa on ratkaistava useita ongelmia: muotin poistamisesta kylpyhuoneessa ennen uuden kanavajärjestelmän korjaamista ja asennusta. Hyväksy, ei ole kovin miellyttävä nähdä mustan muotin kuumamuotteja ikkunaluukussa tai lastenhuoneen kulmissa tai uppoutua korjaustöihin.

Haluatko laskea ilmanvaihtojärjestelmän itse, lähtien ilmakanavien halkaisijasta ja päätyä niiden pituuteen kaikissa talon huoneissa, mutta en tiedä, miten se toimii oikein? Autamme sinua tässä - artikkelissa on hyödyllisiä materiaaleja laskennassa, mukaan lukien kaavat ja todellinen esimerkki erilaisista tiloista ja tietystä alueesta.

Lisäksi standardit, visuaaliset valokuvat ja videomateriaalit vastaavat vertailukirjojen taulukoista, joissa valittiin esimerkki riippumattomasta standardien mukaisesta ilmanvaihtojärjestelmästä.

Ilmanvaihdon syyt

Oikea laskenta ja asianmukainen asennus talon tuuletus suoritetaan sopivassa tilassa. Tämä tarkoittaa sitä, että asuinalueella oleva ilma on tuore, normaali kosteus ja ilman epämiellyttäviä hajuja.

Jos käänteistä kuvaa havaitaan esimerkiksi kylpyhuoneessa tai muussa negatiivisessa ilmiössä jatkuvasta tukkeutumisesta, muotista ja sienestä, on silloin tarkistettava ilmanvaihtojärjestelmän kunto.

Monet ongelmat johtuvat mikrokreän puutteesta, joka aiheutuu ilmatiiviiden muovi-ikkunoiden asennuksesta. Tällöin taloon tulee liian vähän raittiista ilmaa, on välttämätöntä huolehtia sen virtaamisesta.

Ilmakanavien tukkeutuminen ja paineenalennus voi aiheuttaa vakavia ongelmia poistoilman poistamiseksi, joka on kyllästynyt epämiellyttäviin hajuihin ja liialliseen vesihöyryyn.

Tämän seurauksena muotit ja sienet voivat esiintyä toimistotiloissa, joilla on huono vaikutus ihmisten terveyteen ja voivat aiheuttaa useita vakavia sairauksia.

Mutta myös sattuu, että ilmanvaihtojärjestelmän elementit toimivat hyvin, mutta edellä kuvatut ongelmat ovat edelleen ratkaisematta. Ehkä tietyn talon tai huoneiston ilmanvaihtojärjestelmän laskelmat on suoritettu väärin.

Negatiivisesti tilojen tuuletus voi vaikuttaa niiden muuttamiseen, uudelleen suunnitteluun, laajennusten ulkonäköön, edellä mainittujen muovi-ikkunoiden asentamiseen jne.

Tällaisten merkittävien muutosten tapauksessa se ei laske laskelmia uudelleen eikä nykyistä tuuletusjärjestelmää uudisteta uusien tietojen mukaisesti.

Yksi yksinkertainen tapa havaita ilmanvaihdon ongelmat on tarkistaa veton läsnäolo. Pakoputken ristikkoon sinun on tuettava valaistu ottelu tai ohut paperiarkki.

Tällaista tarkastusta ei ole tarpeen käyttää avotulella, jos huone käyttää kaasulämmityslaitteita.

Jos liekki tai paperi taipuu luottavaisesti piirustussuuntaan, työntövoima on olemassa, mutta jos tämä ei tapahdu tai taipuma on heikko, epäsäännöllinen, poistoilman sammumisen ongelma tulee ilmeiseksi.

Syynä voi olla tukkeutuminen tai vaurioituminen kanavaan virheellisen korjauksen seurauksena.

Ei aina ole mahdollista poistaa hajoamista, ongelman ratkaisu on usein lisäpoistolaitteen asennus. Ennen asennusta ne eivät myöskään loukkaa tarpeellisia laskelmia.

Kuinka laskea ilmanvaihtoa?

Kaikki ilmanvaihtojärjestelmän laskelmat rajoittavat huoneen ilman tilavuuden määrittämistä. Koska tällainen huone voidaan pitää erillisenä huoneena ja koko huoneen tietyssä talossa tai asunnossa.

Näiden tietojen sekä sääntelyasiakirjojen tietojen perusteella lasketaan ilmanvaihtojärjestelmän tärkeimmät parametrit, kuten poikkileikkaus ja ilmakanavien lukumäärä, puhaltimien teho jne.

On erikoistuneita laskentamenetelmiä, joiden avulla voit laskea paitsi ilmamassojen uudistamisen huoneessa, myös lämpöenergian poistamisen, kosteuden muutosten, epäpuhtauksien poiston ja niin edelleen.

Tällaisia ​​laskelmia tehdään yleensä teollisiin, sosiaalisiin tai mihin tahansa erikoistapahtuviin rakennuksiin.

Jos on tarvetta tai halua tehdä tällaisia ​​yksityiskohtaisia ​​laskelmia, on parasta ottaa yhteyttä insinööriin, joka on opiskellut samanlaisia ​​tekniikoita. Asumistilojen laskemiseen käytetään seuraavia vaihtoehtoja:

  • moninaisuuksia;
  • hygienia- ja hygieniavaatimukset;
  • alueittain.

Kaikki nämä menetelmät ovat suhteellisen yksinkertaisia, kun he ovat ymmärtäneet olemuksensa, vaikka maallikko voi laskea ilmanvaihtojärjestelmän perusparametrit.

Helpoin tapa on käyttää alueen laskelmia. Seuraava sääntö perustuu perustaksi: joka tunti talon pitäisi saada kolme kuutiometriä raitista ilmaa neliömetriä kohden.

Ei ole otettu huomioon henkilöitä, jotka asuvat pysyvästi talossa.

Myös terveys- ja hygieniavaatimusten laskeminen on suhteellisen yksinkertaista. Tässä tapauksessa laskelmat eivät perustu alueeseen, vaan pysyvien ja tilapäisten asukkaiden määrään.

Jokaiselle asukkaalle on annettava raikasta ilmaa 60 kuutiometriä tunnissa.

Jos tilapäisillä vierailijoilla on säännöllinen vierailu, niin jokaiselle tällaiselle henkilölle on lisättävä 20 kuutiometriä tunnissa.

Moninkertaisuuden laskeminen on hieman monimutkaisempaa. Toiminnassa otetaan huomioon kunkin erillisen huoneen tarkoitus ja eritelmät useiden eri vaihtoehtojen osalta.

Ilmansuojan puutetta kutsutaan kertoimeksi, joka heijastaa poistoilman täydellistä korvaamista huoneeseen tunnin ajan. Asiaankuuluvat tiedot sisältyvät erityiseen sääntelytaulukkoon (SNIP 2.08.01-89 * Asuinrakennukset, liite. 4).

Laske ilman määrä, joka on päivitettävä tunnin sisällä kaavan mukaisesti:

L = N * V,

  • N - taulukosta otettu lentotietojen tiheys tunnissa;
  • V - tilojen määrä, m3.

Jokaisen huoneen äänenvoimakkuus on hyvin yksinkertainen laskea, joten tämän huoneen pinta-alan on kerrottava sen korkeuden mukaan. Jokaisen huoneen osalta ilmaa vaihdetaan tunnissa laskettuna edellä esitetyn kaavan mukaisesti.

Yhteenveto ilmestyy L jokaisesta huoneesta, lopullinen arvo antaa sinulle mahdollisuuden saada käsitys siitä, kuinka paljon raitista ilmaa tulisi huoneeseen yksikköä kohden.

Tietenkin sama määrä poistoilmaa on poistettava tuuletuksen kautta. Samassa huoneessa älä asenna syöttö- ja poistoilmastointia.

Yleensä ilman virtaus on "puhtaiden" huoneiden kautta: makuuhuone, lastentarha, olohuone, toimisto jne.

Irrota sama ilma huoneista viralliseen käyttöön: kylpyhuone, kylpyhuone, keittiö jne. Tämä on järkevää, koska näiden huoneiden tunnusomaiset epämiellyttävät hajuhaitat eivät levitä asunnon päälle, mutta näkyvät välittömästi ulkona, mikä tekee talosta mukavampaa.

Siksi laskennassa normi otetaan vain tuloilmaa tai vain poistoilmastointia varten, koska se näkyy sääntelytaulukossa.

Jos ilmaa ei tarvitse syöttää tai poistaa tietyltä huoneelta, vastaava ruutu on viiva. Joissakin huoneissa ilmamäärän vähimmäisarvo ilmoitetaan.

Jos laskettu arvo oli pienempi, laskelmissa olisi käytettävä taulukkomuotoa.

Tietenkin talossa voi olla huoneita, joiden tarkoitusta ei ole esitetty taulukossa. Tällaisissa tapauksissa käytetään asuintiloihin sovellettuja normeja, i. 3 kuutiometriä neliömetriltä huoneesta.

Sinun tarvitsee vain moninkertaistaa huoneen pinta-ala 3: llä, vastaanotettu arvo otetaan normatiivisena moninaisena ilmanvaihtoa.

Kaikkien ilmakulutusarvon L arvot on pyöristettävä ylöspäin niin, että ne ovat viiden kerran. Nyt meidän on laskettava ilmastokurssin L summa huoneisiin, joiden kautta ilma virtaa.

Ilmoita erikseen niiden huoneiden ilmanvaihtuvuus L, joista poistoilma vedetään.

Sitten sinun pitäisi verrata näitä kahta indikaattoria. Jos L: n sisäänvirtaus osoittautuu korkeammaksi kuin L: llä huppulle, on tarpeen lisätä indeksiä niissä huoneissa, joille laskelmissa käytettiin vähimmäisarvoja.

Esimerkkejä laskentamuutoksista ilmanvaihtoa varten

Ilmanvaihtojärjestelmän laskemiseksi monimuotoisuuden mukaan sinun on ensin laadittava luettelo kaikista talon tiloista, kirjattava alue ja katon korkeus.

Esimerkiksi hypoteettisessa talossa on seuraavat tilat:

  • Makuuhuone - 27 m²;
  • Olohuone - 38 neliömetriä;
  • Toimisto on 18 neliömetriä;
  • Lastenhuone - 12 m²;
  • Keittiö - 20 neliömetriä;
  • Kylpyhuone - 3 neliömetriä;
  • Kylpyhuone - 4 m²;
  • Käytävä - 8 neliömetriä

Koska kattokorkeus on kaikissa huoneissa kolme metriä, laske asianmukaiset ilmamäärät:

  • Makuuhuone - 81 m3;
  • Olohuone - 114 m 3;
  • Toimisto on 54 kuutiometriä;
  • Lasten - 36 m 3;
  • Keittiö - 60 m3;
  • Kylpyhuone on 9 kuutiometriä;
  • Kylpyhuone - 12 kuutiometriä;
  • Käytävä - 24 kuutiometriä.

Nyt käyttämällä edellä olevaa taulukkoa, sinun on laskettava huoneen ilmanvaihdos, ottaen huomioon monien ilmaa vaihdettaessa, mikä lisää kunkin indikaattorin viiteen kertaan:

  • Makuuhuone - 81 m3 * 1 = 85 m3;
  • Olohuone - 38 m² * 3 = 115 m3;
  • Toimisto on 54 kuutiometriä. * 1 = 55 kuutiometriä;
  • Lasten - 36 m3 * 1 = 40 m3;
  • Keittiö - 60 m3. - vähintään 90 kuutiometriä;
  • Kylpyhuone - 9 kuutiometriä. vähintään 50 kuutiometriä;
  • Kylpyhuone - 12 kuutiometriä. vähintään 25 kuutiometriä.

Pöydässä käytävän käytävän normeista ei ole tietoa, joten tämän pienen huoneen tiedot eivät sisälly laskelmaan. Olohuoneen laskennassa tehdään alueella, ottaen huomioon standardin kolme kuutiometriä. metriä neliömetriä kohden.

Nyt meidän on annettava erikseen yhteenveto tiloista, joissa ilmavirta on suoritettu, ja erikseen - huoneet, joissa on poistopuhaltimia.

Ilmavirtauksen määrä tulvassa:

  • Makuuhuone - 81 m3 * 1 = 85 m3 / h;
  • Olohuone - 38 m² * 3 = 115 m3 / h;
  • Toimisto on 54 kuutiometriä. * 1 = 55 kuutiometriä tunnissa;
  • Lasten - 36 m3 * 1 = 40 m3 / h;

vain: 295 m3 / h.

Hupun ilmanvaihtoaukon määrä:

  • Keittiö - 60 m3. - vähintään 90 m3 / h;
  • Kylpyhuone - 9 kuutiometriä. - vähintään 50 m3 / h;
  • Kylpyhuone - 12 kuutiometriä. - vähintään 25 m3 / h.

vain: 165 m3 / h.

Nyt meidän pitäisi verrata vastaanotettuja määriä. Ilmeisesti tarvittava virtaus ylittää huuvan 130 m3 / h (295 m3 / h-165 m3 / h).

Tämän eron poistamiseksi on välttämätöntä lisätä ilmanvaihtovolyymiä venyttämällä esimerkiksi lisäämällä keittiön indeksejä. Muutosten jälkeen laskentatulokset näyttävät tältä:

Ilmansuodatuksen määrä ilmavirtauksella:

  • Makuuhuone - 81 m3 * 1 = 85 m3 / h;
  • Olohuone - 38 m² * 3 = 115 m3 / h;
  • Toimisto on 54 kuutiometriä. * 1 = 55 kuutiometriä tunnissa;
  • Lasten - 36 m3 * 1 = 40 m3 / h;

vain: 295 m3 / h.

Hupun ilmanvaihtomäärä:

  • Keittiö - 60 m3. - 220 m3 / h;
  • Kylpyhuone - 9 kuutiometriä. - vähintään 50 m3 / h;
  • Kylpyhuone - 12 kuutiometriä. - vähintään 25 m3 / h.

vain: 295 m3 / h.

Tulo- ja pakokaasuvolyymit ovat yhtä suuret, mikä vastaa vaatimuksia lentoliikenteen laskemiseksi moninaisuudelta.

Ilmanvaihtojen laskeminen terveysvaatimusten mukaisesti on paljon helpompaa. Oletetaan, että edellä mainitussa talossa kaksi ihmistä pysyvät pysyvästi ja kaksi muuta oleskelevat epäsäännöllisesti.

Laskenta suoritetaan erikseen jokaisessa huoneessa normaalikäytössä 60 kuutiometriä per henkilö pysyvien asukkaiden ja 20 kuutiometriä tunnissa väliaikaisille vierailijoille:

  • Makuuhuone - 2 henkilöä * 60 = 120 kuutiometriä tunnissa;
  • Toimisto - 1 henkilö * 60 = 60 m3 / tunti;
  • Olohuone 2 henkilöä * 60 + 2 henkilöä * 20 = 160 kuutiometriä tunnissa;
  • Lapset 1 henkilö * 60 = 60 m3 / h.

vain pitkin sivujohtoa - 400 m3 / h.

Talon pysyvien ja tilapäisten asukkaiden määrällä ei ole tiukkoja sääntöjä, nämä luvut määräytyvät todellisen tilanteen ja terveen järkeilyn perusteella.

Hupu lasketaan yllä olevassa taulukossa esitettyjen normien mukaisesti ja kasvaa kokonaisvirtausnopeuteen:

  • Keittiö - 60 m3. - 300 m3 / h;
  • Kylpyhuone - 9 kuutiometriä. - vähintään 50 m3 / h;
  • Kylpyhuone - 12 kuutiometriä. - vähintään 50 m3 / h.

Yhteensä huuville: 400 m3 / h.

Lisääntynyt ilmanvaihto keittiölle ja kylpyhuoneelle. Riittämätön pakokaasun tilavuus voidaan jakaa kaikkiin huoneisiin, joissa on poistopuhallus.

Tai lisätä tätä indikaattoria vain yhdelle huoneelle, kuten moninkertaisten laskelmien yhteydessä.

Säilytysnormien mukaisesti ilmanvaihtoa lasketaan tällä tavoin. Sanotaan, että talon ala on 130 neliömetriä.

Tällöin lentoasema pitkin sivujohtoa olisi 130 neliömetriä * 3 kuutiometriä tunnissa = 390 kuutiometriä tunnissa.

Säilytetään tämä tilavuus esimerkiksi liesituulettimen tilalle, joten:

  • Keittiö - 60 m3. - 290 m3 / h;
  • Kylpyhuone - 9 kuutiometriä. - vähintään 50 m3 / h;
  • Kylpyhuone - 12 kuutiometriä. - vähintään 50 m3 / h.

Yhteensä huuville: 390 m3 / h.

Ilmansuojan tasapaino on yksi tärkeimmistä indikaattoreista ilmanvaihtojärjestelmien suunnittelussa. Tähän tietoon perustuvat lisälaskelmat.

Kuinka valita ilmakanavan osa?

Ilmanvaihtojärjestelmä, kuten tiedetään, voi olla kanava tai ei-kanava. Ensimmäisessä tapauksessa on tarpeen valita kanavien oikea poikkileikkaus.

Jos päätetään asentaa suorakaiteen muotoisia malleja, sen pituuden ja leveyden suhdetta tulisi lähestyä 3: 1.

Liikkuvien ilmamassojen nopeus päätien päällä pitäisi olla noin viisi metriä tunnissa ja oksilla - jopa kolme metriä tunnissa.

Tämä varmistaa järjestelmän toiminnan mahdollisimman pienellä melulla. Ilman liikkeen nopeus riippuu pitkälti kanavan poikkipinta-alasta.

Rakenteen mittojen löytämiseksi voit käyttää erityisiä laskentataulukoita. Tällaisessa taulukossa on tarpeen valita vasemmanpuoleisen ilmansyötön tilavuus, esimerkiksi 400 m3 / h, ja ylhäältä valitse nopeusarvo - viisi metriä tunnissa.

Sitten sinun on löydettävä vaakasuoran linjan leikkaus pystysuoralla linjalla nopeuden kautta.

Tästä leikkauspisteestä piirrä viiva kaarteeseen, jota pitkin voidaan määrittää sopiva poikkileikkaus. Suorakulmaisen kanavan osalta tämä on alueen arvo ja pyöreän kanavan halkaisija millimetreinä.

Ensin laskelmat tehdään pääkanavalle ja sitten haaroille.

Täten laskelmat tehdään, jos talossa on vain yksi pakokaasukanava. Jos se on tarkoitus luoda useita poistokanavien, kokonaistilavuus ilmaa vedetään jaettava määrä kanavia, ja sitten suorittaa laskelmat totesi periaatteita.

Lisäksi on olemassa erikoistuneita laskentaohjelmia, joiden avulla voit tehdä tällaisia ​​laskelmia. Asuntojen ja talojen tapauksessa tällaiset ohjelmat voivat olla jopa kätevämpiä, koska ne antavat tarkemman tuloksen.

Hyödyllinen video aiheesta

Tässä videossa on hyödyllisiä tietoja ilmanvaihtojärjestelmän periaatteista:

Talon lämmitys yhdessä lämmitetyn ilman kanssa. Tällöin ilmastointilaitteen toimintaan liittyvien lämpöhäviöiden laskeminen on selkeästi osoitettu:

Oikea ilmanvaihto-laskenta - turvallisen käytön perusta ja takuu suotuisasta mikroilmastosta talossa tai asunnossa. Tietämys perusparametreista, joihin tällaiset laskelmat perustuvat, sallii paitsi suunnitella ilmanvaihtojärjestelmän oikein rakennuksen aikana, mutta myös säätää sen tilan, jos olosuhteet muuttuvat.

Ilmanvaihtojärjestelmien laskenta

Ilman suorituskyky

Ilmanvaihtojärjestelmän laskeminen alkaa ilmamäärän määrittämisellä (ilmanvaihto) mitattuna kuutiometreinä tunnissa. Laskelmissa tarvitsemme laitoksen suunnitelman, jossa ilmoitetaan kaikkien tilojen nimet (kohteet) ja alueet.

Palvella raitista ilmaa vaaditaan vain niissä huoneissa, joissa ihmiset voivat pysyä pitkään.. Makuuhuoneet, olohuoneet, toimistot, jne ilmakäytäviä ole palvellut ja keittiö ja kylpyhuone poistetaan kautta poistokanavia. Siten liikenne ilmavirtakuvion on seuraava: raikasta ilmaa syötetään asuintiloista, siellä se (jo osittain saastuneet) tulee käytävään käytävällä - kylpyhuoneissa ja keittiö, jossa poistetaan ilmanpoistojärjestelmissä, vieden mukanaan epämiellyttäviä hajuja ja epäpuhtauksia. Tämä ilmavirtaus piiri syöttää ilman kiertovesi "likainen" huonetta, elimoiden leviämisen hajuja huoneistossa tai mökki.

Jokaisesta olohuoneesta määritetään toimitetun ilman määrä. Laskenta suoritetaan yleensä SNiP 41-01-2003 ja MGSN 3.01.01 mukaisesti. Koska SNiP asettaa tiukempia vaatimuksia, laskelmissa ohjataan tämä asiakirja. Siinä sanotaan, että tilojen ilman luonnollinen ilmanvaihto (eli jos ikkunat eivät avaudu), ilmavirtaus on oltava vähintään 60 m³ / h per henkilö. Makuuhuoneen joskus käyttää pienempi arvo - 30 m³ / h per henkilö, kuten tilassa unen henkilö kuluttaa vähemmän happea (se on sallittua MGSN ja napsia tilojen läpivetokanaaleihin). Laskelmassa otetaan huomioon vain henkilöt, jotka ovat huoneessa pitkään. Esimerkiksi jos suuri yritys kokoontuu olohuoneeseesi pari kertaa vuodessa, sinun ei tarvitse lisätä ilmanvaihtoa. Jos haluat asiakkaiden viihtyvän, voit asentaa VAV-järjestelmän, jonka avulla voit säätää ilmavirtaa erikseen jokaisessa huoneessa. Tämän järjestelmän avulla voit lisätä ilmanvaihtoa olohuoneessa vähentämällä sitä makuuhuoneessa ja muissa huoneissa.

Laskettaessa ihmisten ilmaa, meidän on laskettava ilmanvaihto moninkertaisesti (tämä parametri osoittaa kuinka monta kertaa huoneessa on täydellinen ilmanvaihto huoneessa). Sen varmistamiseksi, että huoneessa oleva ilma ei pysähdy, on välttämätöntä tarjota vähintään yksi ilmanvaihto.

Täten tarvittavan ilmavirtauksen määrittämiseksi meidän on laskettava kaksi ilmanvaihtoarvoa: ihmisten määrä ja edelleen moninaisuus ja valitse sitten lisää näistä kahdesta arvosta:

  1. Ilmanvaihto henkilömäärän mukaan:

  • lepotilassa (unta)? 30 m³ / h;
  • tyypillinen arvo (SNIP: n mukaan)? 60 m³ / h;
  • Ilmankeräyksen laskeminen moninaisuudessa:

    Laskettuaan tarvittavan ilmanvaihtoa kullekin palvelevalle huoneelle ja yhdistämällä saadut arvot, opimme ilmanvaihtojärjestelmän yleisestä suorituskyvystä. Viitaten ilmanvaihtojärjestelmien suoritusarvojen tyypilliset arvot:

    • Yksittäisille huoneille ja huoneistoille? 100-500 m³ / h;
    • Mökkejä varten? 500-2000 m³ / h;
    • Toimistoihin? 1000 - 10 000 m³ / h.

    Ilmanjakeluverkon laskeminen

    Määrittämisen jälkeen tuuletus suorituskyky voi edetä suunnittelun ilman jakeluverkon, joka koostuu kanavat, liittimet (sovittimet, navat, muuttuu), kuristusventtiilit ja ilmaventtiilit (verkkojen tai diffuusorit). Ilmanjakeluverkon laskeminen alkaa ilmakanavien suunnitelman laatimisella. Järjestelmä on sellainen, että reitin minimipituudella ilmanvaihtojärjestelmä voi toimittaa lasketun ilman määrän kaikkiin huoltotiloihin. Lisäksi tämän järjestelmän mukaisesti lasketaan ilmakanavien mitat ja valitaan ilmajakaajat.

    Ilman kanavien mittojen laskeminen

    Kanavien mittojen (poikkipinta-alan) laskemiseksi meidän on tiedettävä kanavan läpi kulkevan ilman määrän aikayksikössä ja kanavan suurin sallittu ilmanopeus. Ilman nopeuden kasvaessa ilmakanavien mitat pienenevät, mutta melutaso ja verkon vastus lisääntyvät. Käytännössä huoneistoissa ja mökeissä kanavien ilmanopeus on rajattu 3-4 m / s: n lämpötilaan, koska korkeissa ilmavirroissa melua sen liikkumisesta kanavissa ja jakelijoissa voi tulla liian huomaamatta.

    On myös muistettava, että käyttää "hiljainen" matalan nopeuden kanavat suurten poikkileikkaus ei ole aina mahdollista, koska niitä on vaikea sijoittaa välitilaan. Vähentää korkeutta välitilaan mahdollistaa käytön suorakaidekanavien, jotka ovat samalla poikkipinta-ala on pienempi korkeus kuin pyöreä (esim., Pyöreä kanava, jonka halkaisija 160 mm on sama poikkipinta-ala kuin suorakulmainen koko 200 x 100 mm). Samanaikaisesti pyöreiden joustavien kanavien verkon asentaminen on helpompaa ja nopeampaa.

    Joten kanavan arvioitu poikkipinta-ala määritetään kaavalla:

    Lopputulos saadaan neliösenttimetreinä, koska tällaisissa yksiköissä se on helpompi havaita.

    Kanavan todellinen poikkipinta-ala määritetään kaavalla:

    Taulukossa on ilmavirta pyöreissä ja suorakulmaisissa ilmakanavissa eri ilmavirroilla.

    Lasketaan koko kanava on tehty erikseen kunkin haaran, alkaen pääkanaalialueen, joka yhdistää ilman esikäsittely. Huomaa, että ilman nopeus on sen ulostulon voi olla jopa 6-8 m / s, koska mitat liitoslaippa AHU rajoittaa koko sen kotelon (esiintyvä melu sen sisällä, sammutettiin äänenvaimennin). Vähentää ilman nopeus ja melun vähentäminen pääkanavan koot valitaan usein AHU suurempi laippa mitat. Tässä tapauksessa yhteys pääkanavan AHU tehdään sovittimen kautta.

    Kotitalouksien ilmanvaihtojärjestelmät käyttävät yleensä pyöreitä ilmakanavia, joiden läpimitta on 100 - 250 mm tai suorakaiteen muotoinen vastaava poikkileikkaus.

    Ilmajäähdyttimien valinta

    Ilmavirtauksen tunteminen voidaan valita ilmajoottoreiden luettelosta ottaen huomioon niiden koon ja melutason suhde (ilmanjakajan poikkipinta-ala on pääsääntöisesti 1,5-2 kertaa suurempi kuin ilman kanavan poikkipinta-ala). Tarkastellaan esimerkiksi suosittujen ilmajärjestelmien parametreja Arktos sarja AMN, ADN, AMP, ADR:

    Luettelo osoittaa niiden mitat (sarake A x B) ja poikkipinta-ala (F0) sekä parametrit tietylle ilmavirralle (sarake L0). Kun ilmavirta kasvaa, melutaso nouseeLWA) ja painehäviö (APn) ja lisää myös ilmasuihkun määrää. Vastaavat sarakkeet ilmaisevat etäisyyden rungosta, jossa ilman nopeus vx on 0,2 tai 0,5 m / s. Asuintiloissa ristikot valitaan yleensä pylväillä, joiden melutaso on jopa 25 dB (A) toimistoissa, melutaso on yleensä sallittu jopa 35 dB (A).

    Jotta varsinaiset ristikkoparametrit vastaavat luettelossa mainittuja, on välttämätöntä varmistaa tasaisen ilman jakautuminen koko alueella. Tällöin on toivottavaa käyttää staattista painekammioa tai sovitinta, jossa on sivuliitäntä, jossa ilman virtaus ennen ristikon kytkemistä pyörii oikeaan kulmaan.

    Kotitalouksien ilmanvaihtojärjestelmät käyttävät tavallisesti jakeluverkkoja, joiden koko vaihtelee 100 × 100 mm: stä 400 × 200 mm: n tai pyöreisiin diffuusoreihin, joilla on vastaava poikkileikkaus.

    Verkon vastuksen laskeminen

    Kun ilmavirta kulkee kanavien, sovittimien, jakelijoiden ja kaikkien muiden verkon osien läpi, se kokee liikkumisvastuksen. Tämän vastuksen voittamiseksi ja vaaditun ilmavirtauksen ylläpitämiseksi tuulettimen on muodostettava tietty paine, mitattuna Pascalsissa (Pa). Mitä suurempi painehäviö jakeluverkossa on, sitä pienempi on tuulettimen todellinen toiminta. Puhaltimen tai ilmanvaihtojärjestelmän suorituskyvyn riippuvuus ilmaverkon vastuksesta (kokonaispaine) on esitetty kuvion muodossa tuuletusominaisuus. Lisätietoja tästä parametrista käsitellään jäljempänä.

    Näin ollen ilmankäsittely-yksikön valintaa varten meidän on laskettava verkon vastus. Täällä meillä on kuitenkin vaikeuksia, sillä tarkka laskelma edellyttää, että otetaan huomioon kunkin elementin vastustus. Suunnitteluosastolla tämä laskenta suoritetaan automaattisesti käyttämällä erikoistunutta ohjelmistopakettia, kuten MagiCAD. Laskin käyttää hieman yksinkertaistettua menetelmää, joka ottaa kuitenkin huomioon kaikki verkon perusparametrit. Manuaalinen laskenta on erittäin työlästä ja vaatii suuren datamäärän käyttöä - verkkoelementtien resistanssit tai taulukoita riippuen ilmaliikenteen nopeudesta. Tarkasteltaessa annamme tyypillisiä arvoja ilmanvaihtojärjestelmän ilmanjakoverkon resistanssille syöttöyksikön perusteella ilmamäärän 3-4 m / s ilmakanavissa (pois lukien hienosuodattimen vastus):

    • 75-100 Pa huoneissa 50-150 m².
    • 100-150 Pa mökeille, joiden pinta-ala on 150-350 m².

    Vastus verkko on heikosti riippuvainen määrä huonetta palvelee ja määritelty pituus ja konfiguraatio pisin sisääntuloaukosta (imu ritilä) ulostuloon (hajotin). Huomaa, että nämä arvot ovat voimassa vain ilmanvaihtojärjestelmien perusteella koneen, mutta ei ladontajärjestelmä, koska emme tarvitse ottaa huomioon lämmitin paineenlasku, karkeasuodatin, ilmaventtiili ja muut osat ilmankäsittelykoneesta (sen ilmanvaihto ominaisuudet rakentamisen jo huomioon ottaen vastus kaikki näistä elementeistä).

    Lämmittimen teho

    Ilmastointikapasiteetin määrittämisen jälkeen voimme laskea ilmanlämmittimen tarvittavan kapasiteetin. Tätä varten tarvitsemme ilman lämpötilan järjestelmän ulostuloa ja vähimmäislämpötilaa kylmällä vuodella. Asuintilojen sisään tulevan ilman lämpötila ei saisi olla pienempi +18 ° С. Ulkoilman vähimmäislämpötila riippuu ilmastovyöhykkeestä ja Moskovan oletetaan olevan yhtä suuri -26 ° С. Näin ollen, kun ilmanlämmitin on kytketty täydellä teholla, sen on lämmitettävä ilmavirta 44 ° С. Koska Moskovan vaikeat pakkaset ovat lyhyitä, on mahdollista käyttää alemman teholämmittimen, edellyttäen että ilmanvaihtojärjestelmällä on kapasiteetin säätö: tämä mahdollistaa mukavan ilman lämpötilan ylläpitämisen kylmänä aikana pienentämällä puhaltimen nopeutta.

    Lämmittimen teho lasketaan kaavalla:

    Ilmalämmittimen tehon laskemisen jälkeen on tarpeen valita syöttöjännite (sähkölämmittimelle): 220 V / 1 vai 380 V / 3 vaihetta. Yli 4-5 kW: n lämmittimen kapasiteetilla on toivottavaa käyttää kolmivaiheista liitäntää. Lämmittimen maksama enimmäisvirta voidaan laskea kaavalla:

    • 220V ?? yksivaiheisille toimituksille;
    • 660V (3 × 220V)? kolmivaiheiseen syöttöön (kun kytket lämmittimet "tähti" välillä 0 ja vaihe).
  • Lämmittimen tehon tyypilliset arvot ovat 1-5 kW asuntojen ja 5 - 50 kW toimistojen ja mökkien osalta. Korkealla suunnittelukyvulla on parempi asentaa vedenlämmitin, joka käyttää vettä keskus- tai itsenäisestä lämmitysjärjestelmästä lämmönlähteenä.

    Kulutetun sähkön laskeminen

    Ilmanvaihtojärjestelmissä, joissa on sähköinen ilmalämmitin, tärkeimmät energiakustannukset ovat kylmän tuloilman lämmittäminen. Ymmärtääksesi, kuinka paljon sinun on maksettava sähköstä, ei riitä tietää vain ilmanlämmitinvoimaa, sillä säteilijöiden maksimaalinen teho toimii lyhyen ajan, vain vaikeiden pakkasen aikana. Kun ulkolämpötila nousee, tehonkulutus vähenee (kaikki ilmankäsittelykeskukset säätävät automaattisesti ilmanlämmittimen tehoa ylläpitää asetettua lämpötilaa ulostulossa), joten keskimääräinen virrankulutus on huomattavasti pienempi kuin maksimi.

    Lämmityksen energiakustannusten arvioimiseksi koko vuoden ajan sinun on tiedettävä keskimääräinen ilman lämpötila kuukausittain (kahden tariffimittarin osalta tarvitset erilliset päivä- ja yölämpötilat). Näiden tietojen mukaan energiankulutuksen kustannukset voidaan laskea:

    Laskimessa tämä kaava laskee sähkön kulut, joita käytetään ilman lämmittämiseen syyskuusta toukokuuhun. Tiedot keskimääräisestä päivä- ja yölämpötilasta otetaan Yandeks.Pogoda-palvelusta, sähkönkulut on ilmoitettu 1.7.2012, huoneistot, joissa on sähköliesi. Sähkön tosiasialliset kustannukset ovat tietysti hieman erilaiset, koska ilman lämpötila voi poiketa keskimäärin yhdestä suunnasta tai toisesta, mutta saatu tulos antaa meille mahdollisuuden arvioida tarkasti ilmanvaihtojärjestelmän toiminnan kustannukset.

    Käyttökustannusten vähentämiseksi on mahdollista käyttää VAV-järjestelmää, joka vähentää ilmanlämmittimen suunnittelukykyä 20-30% ja keskimääräisen energiankulutuksen 30-50%. Samanaikaisesti laitteiden kustannusten nousu on vain 15-20%, mikä maksaa takaisin tämän arvostuksen kokonaisuudessaan vuodessa. Lisätietoja tällaisista tuuletusjärjestelmistä on luettavissa VAV-järjestelmän artikkelissa.

    Toimitusvalinta

    Ilmankäsittelykoneen valintaa varten tarvitaan kolme parametria: kokonaiskapasiteetti, ilmanlämmittimen kapasiteetti ja ilmansyöttöverkon vastus. Olemme jo laskeneet ilmalämmittimen kapasiteetin ja voiman. Verkon kestävyys löytyy Laskin-sovelluksen avulla tai manuaalisen laskennan kanssa, joka vastaa tyypillistä arvoa (katso kohta Verkon vastuksen laskeminen).

    Sopivan mallin valitsemiseksi meidän on valittava tuulettimet, joiden maksimiteho on hiukan suurempi kuin laskettu arvo. Tämän jälkeen ventilaatiokyvyn perusteella määritetään järjestelmän suorituskyky tietyssä verkkovastuksessa. Jos saatu arvo on hieman korkeampi kuin ilmanvaihtojärjestelmän vaadittu suorituskyky, valittu malli sopii meille.

    Tarkista esimerkiksi, onko ventu-asennus sopiva mökille, jonka pinta-ala on 200 m², kuvassa.

    Arvioitu tuottavuus - 450 m³ / h. Verkon vastus on 120 Pa. Tosiasiallisen suorituskyvyn määrittämiseksi meidän on vedettävä vaakasuora viiva 120 Pa: n arvosta, sitten pystysuoran viivan vetämiseen leikkauspisteen pisteestä. Risteyksessä tämän linjan kanssa akselin "Performance" ja antaa meille haluttuun arvoon - noin 480 l / s, mikä on hieman korkeampi kuin lasketut arvot. Siksi tämä malli sopii meille.

    Huomaa, että monet modernit tuulettimet ovat lempeitä tuulettimia. Tämä tarkoittaa, että mahdolliset virheet verkon resistanssin määrittämisessä eivät juuri vaikuta ilmanvaihtojärjestelmän todelliseen suorituskykyyn. Jos me, meidän esimerkki virhe määritettäessä vastus ilmanohjausvälineen verkkoon 50 Pa (eli todellinen vastus verkon ei olisi 120 ja 180 Pa), järjestelmän suorituskykyä pienenisivät ainoastaan ​​20 m³ / h asti 460 m³ / h, mikä ei vaikuta olisi seurausta valinnastanne.

    Ilmastointilaitteen (tai puhaltimen, jos käytetään modeemiyhteyttä) valitsemisen jälkeen, voi käydä ilmi, että sen todellinen suorituskyky on huomattavasti ennustettua korkeampi, eikä edellisen ilmastointilaitteen malli ole sopiva, koska sen kapasiteetti ei riitä. Tässä tapauksessa meillä on useita vaihtoehtoja:

    1. Jätä kaikki sellaisenaan, kun todellinen ilmanvaihto kapasiteetti on suurempi kuin laskettu. Tämä johtaa energian kulutukseen, jota käytetään lämmittämään ilmaa kylmällä kaudella.
    2. "Strangle" ventuvantovu tasapainottavalla kaasuventtiiliä sulkemalla ne, kunnes ilmavirta kussakin huoneessa ei laske laskettuun tasoon. Tämä johtaa myös energian liikakäyttöön (vaikkakaan ei ole yhtä suuri kuin ensimmäisessä versiossa), koska tuuletin toimii liiallisella kuormituksella ja voittaa verkon lisääntyneen vastuksen.
    3. Älä sisällytä enimmäisnopeutta. Tämä auttaa, jos venttiilissä on 5-8 puhaltimen nopeutta (tai tasaisen nopeuden säätö). Kuitenkin, suurin osa rahoituksesta ventustanovok on vain 3-vaihe nopeuden säätö, joka ei todennäköisesti salli tarkka säätö halutun suorituskyvyn.
    4. Vähennä ilmankäsittelylaitteen maksimikapasiteettia tarkalleen määritetylle tasolle. Tämä on mahdollista siinä tapauksessa, että automaattisen ilmanvaihtojärjestelmän avulla voit säätää maksimipuhallinnopeutta.

    Pitäisikö SNiP ohjata minua?

    Kaikissa laskelmissa käytettiin SNiP: n ja MGSN: n suosituksia. Tämä sääntelyasiakirjojen avulla voit määrittää pienimmän sallitun ilmanvaihdon kapasiteetin, joka takaa huoneen henkilöiden mukavan oleskelun. Toisin sanoen SNiP-vaatimusten ensisijaisena tarkoituksena on minimoida ilmanvaihtojärjestelmän kustannukset ja sen toimintakustannukset, mikä on tärkeää hallinnollisten ja julkisten rakennusten ilmanvaihtojärjestelmien suunnittelussa.

    Asunnoissa ja mökkeissä tilanne on erilainen, koska suunnittelet ilmanvaihtoa itsellesi, ei keskimääräiselle asukkaalle, eikä kukaan pakota sinua noudattamaan SNiP: n suosituksia. Tästä syystä järjestelmän suorituskyky voi olla suurempi kuin suunnitteluarvo (suuremman mukavuuden) tai alhaisempi (virrankulutuksen ja järjestelmän kustannusten pienentämiseksi). Lisäksi subjektiivinen mukavuuden tunne on erilainen: joku on tarpeeksi 30-40 m³ / h per henkilö ja jollekin on pieni ja 60 m³ / h.

    Kuitenkin, jos et tiedä mitä ilmavaihtoa tarvitset mukavasti, on parempi noudattaa SNiP: n suosituksia. Nykyaikaisten ilmankäsittelylaitteiden avulla voit säätää suorituskykyä ohjauspaneelista, mutta kompromissi mukavuuden ja talouden välillä on jo ilmanvaihtojärjestelmän käytössä.

    Ilmanvaihtojärjestelmän melutaso

    Kuinka tehdä "hiljainen" ilmanvaihtojärjestelmä, joka ei häiritse nukkumista yöllä, kuvataan tuuletusosastolla asuntoa ja yksityistä taloa.

    Ilmanvaihtojärjestelmän suunnittelu

    Ilmastointilaitteiden parametrien ja projektin kehittämisen tarkkaa laskemista varten ota yhteyttä hanketoimistoon. Voit myös laskea laskimen avulla yksityisen talon ilmanvaihtojärjestelmän arvioidut kustannukset.

    Kuinka laskea huoneiston talojen luonnollinen ilmanvaihto?

    Kerrostalossa tai huoneistossa olevien järjestettyjen ilmakeskusten tehtävänä on poistaa ylimääräinen kosteus ja jätekaasut ja korvata se raikkaalla ilmalla. Näin ollen poistolaitteen ja virtauslaitteen osalta on tarpeen määrittää poistettavan ilmamassan määrä - laske ilmanvaihto erikseen jokaiseen huoneeseen. Laskentamenetelmät ja ilmavirtaukset otetaan yksinomaan SNiP: n mukaisesti.

    Normatiivisten asiakirjojen terveysvaatimukset

    Ilmanvaihtojärjestelmästä toimitetuista mökitiloista toimitetun ja poistetun ilman vähimmäismäärää säännellään kahdella perusasiakirjalla:

    1. "Asuinkerrostalot" - SNiP 31-01-2003, kohta 9.
    2. "Lämmitys, ilmanvaihto ja ilmastointi" - SP 60.13330.2012, pakollinen lisäys "K".

    Ensimmäisessä asiakirjassa esitetään asuinrakennusten asuinrakennusten ilmanvaihtoa koskevat terveys- ja hygieniavaatimukset. Käytetään kahdenlaisia ​​mittoja: ilmamassavirta tilavuusyksikköä kohti (m³ / h) ja tunneittain.

    Ohje. Ilmakuljetuksen moninaisuus ilmaistaan ​​luvulla, joka kertoo kuinka monta kertaa tunnin sisällä huoneen ilmastoympäristö päivitetään kokonaan.

    Ilmaus - alkeellinen tapa uudistaa happea asunnossa

    Huoneen tarkoituksesta riippuen syöttö- ja poistoilmastoinnissa on oltava seuraava virtausnopeus tai ilman seoksen päivitysten määrä (monimuotoisuus):

    • olohuone, lastenhuone, makuuhuone - 1 tunti tunnissa;
    • keittiö, jossa sähköliesi - 60 m³ / h;
    • kylpyhuone, wc, wc - 25 m³ / h;
    • kiinteän polttoaineen kattilan uunissa ja keittiössä, jossa on kaasuliesi, laitteiston käytön aikana tarvitaan moninkertaista 1 plus 100 m³ / h;
    • kattilahuone, jossa on maakaasua polttava lämmöntuottaja - kolminkertainen uusiminen sekä palamisen edellyttämä ilman määrä;
    • ruokakomero, vaatehuone ja muut apulaitteet - moninaisuus 0,2;
    • kuivaus tai pyyhintä - 90 m³ / h;
    • kirjasto, toimisto - 0,5 kertaa tunnissa.

    Huom. SNiP mahdollistaa yleisen ilmanvaihdon aiheuttaman taakan keventämisen joutokäynnillä tai ihmisten puutteella. Asuinrakennuksissa monimuotoisuus laskee 0,2: een, tekniseen - 0,5: een. Vaatimus huoneisiin, joissa kaasukäyttöiset tilat sijaitsevat, säilyy ennallaan, - ilmatietojen tuntikohtainen uusiminen joka tunti.

    Luonnollisen luonnoksen aiheuttamien haitallisten kaasujen päästöt ovat halvin ja helpoin tapa päivittää ilmaa

    Asiakirjan kohdassa 9 ymmärretään, että pakokaasuvolyymi on yhtä suuri kuin virtausmäärä. JV 60.13330.2012 -standardin vaatimukset ovat hieman yksinkertaisempia ja riippuvat huoneessa oleskelevien henkilöiden lukumäärästä vähintään 2 tuntia:

    1. Jos 1 asukkaan huoneistossa on vähintään 20 m², huoneissa on tuore virtaus 30 m³ / h 1 henkilöä kohden.
    2. Tuloilman määrä lasketaan alueittain, kun asukasta kohden on vähemmän kuin 20 neliötä. Suhde on seuraava: asunnon 1 m2: n osalta toimitetaan 3 m3: n sisäänvirtaus.
    3. Jos huoneistossa ei ole tuuletusta (ei ikkunoita ja ikkunoita), jokaiselle henkilölle on annettava 60 m³ / h puhdasta seosta riippumatta neliöstä.

    Kahden eri asiakirjan edellä mainitut sääntelyvaatimukset eivät ole lainkaan ristiriidassa keskenään. Ilmanvaihdon yleisen vaihtojärjestelmän suorituskyky lasketaan alun perin SNiP 31-01-2003 "Asuinrakennukset" mukaisesti.

    Tulokset on sovitettu säännöstön "Ilmanvaihto ja ilmastointi" vaatimusten kanssa ja tarvittaessa korjataan. Seuraavassa analysoimme laskentalgoritmia yksikerroksisen talon esimerkissä, joka esitetään piirustuksessa.

    Ilmavirtauksen määrittäminen moninaisuudelta

    Tyypillinen tulo- ja poistoilmoituksen laskenta tehdään erikseen jokaisessa huoneistossa tai maalaistalossa. Ilmamassavirran selvittäminen rakennuksessa kokonaisuutena saadaan yhteenvetona saaduista tuloksista. Melko yksinkertaista kaavaa käytetään:

    • L - tarvittava syöttö- ja poistoilmamäärä, m³ / h;
    • S - huoneen neliö, jossa ilmanvaihto lasketaan, m²;
    • h - kattojen korkeus, m;
    • n - huoneen ilmasto-olosuhteiden päivitysten määrä 1 tuntiin (SNiP säätelee).

    Esimerkki laskelmasta. Yhden kerroksisen rakennuksen olohuoneen pinta-ala on 3 metrin korkeudeltaan 15,75 m². SNiP 31-01-2003 vaatimusten mukaan asumistilojen monimuotoisuus n on yhtä suuri kuin yksi. Tällöin ilmaseoksen tuntivelvo on L = 15,75 x 3 x 1 = 47,25 m³ / h.

    Tärkeä asia. Keittiöstä poistetun ilmaseoksen määrän määrittäminen kaasuliesiin riippuu asennetusta ilmanvaihtolaitteesta. Yleinen järjestelmä näyttää tältä: sääntöjen mukainen ainoa vaihto tapahtuu luonnollisen ilmanvaihdon avulla ja lisäksi 100 m³ / h heittää kotitalouksien liesituuletin.

    Samanlaisia ​​laskelmia tehdään kaikille muille huoneille, kehitetään ilmastoverkon (luonnollinen tai pakotettu) järjestely ja tuuletuskanavien mitat määritetään (ks. Alla oleva esimerkki). Prosessin automatisointi ja nopeuttaminen auttavat laskentaohjelmaa.

    Online-laskin auttaa

    Ohjelma käsittelee vaaditun ilmamäärän SNiP: n sääntelemän moninaisuuden mukaan. Valitse vain huonetyyppi ja kirjoita sen mitat.

    Huom. Kaasulämmöntuotantolaitteiden kattiloissa laskin ottaa huomioon vain kolminkertaisen vaihtoasteen. Tulokseen lisätään polttoaineelle menevä raitisilman määrä.

    Selvitämme lentoliikenteen asukkaiden määrän perusteella

    JV 60.13330.2012 liite "K" määrittelee huoneen ilmanvaihdon yksinkertaisimman kaavan mukaisesti:

    Tuloksena on esitetty esitetty kaava:

    • L on vaadittu tulo (pakokaasu), m³ / h;
    • m - puhtaan seoksen tilavuus 1 henkilöä kohden, lisäyksessä "K" olevassa taulukossa ilmoitettu, m³ / h;
    • N - ihmisten määrä, jotka ovat jatkuvasti tässä huoneessa 2 tuntia päivässä tai enemmän.

    Toinen esimerkki. On kohtuullista olettaa, että yhden kerroksen talossa on kaksi perheenjäsentä pitkään. Koska ilmanvaihto on järjestetty ja jokaiselle vuokralaiselle on yli 20 neliötä, parametrin m oletetaan olevan 30 m³ / h. Tarkastellaan sisäänvirtausta: L = 30 x 2 = 60 m³ / h.

    Se on tärkeää. Huomaa, että tulos on suurempi kuin moninkertaisuuden (47,25 m³ / h) määrittämä arvo. Lisälaskelmissa on otettava huomioon luku 60 m³ / h.

    Laskennan tulokset paranee välittömästi rakennuksen pohjapiirroissa

    Jos asunnossa asuvien ihmisten määrä on niin suuri, että jokainen henkilö kohdennetaan alle 20 m² (keskimäärin), edellä olevaa kaavaa ei voida käyttää. Säännöt osoittavat, että tässä tapauksessa olohuoneen ja muiden huoneiden pinta-ala on kerrottava 3 m³ / h. Koska asunnon kokonaispinta-ala on 91,5 m², ilmanvaihdon arvioitu tilavuus on 91,5 x 3 = 274,5 m³ / h.

    Tilavissa huoneissa, joissa on korkeat katot (3 metrin etäisyydeltä), ilmakehän uudistamista tarkastellaan kahdella tavalla:

    1. Jos huoneessa asuu usein suuri joukko ihmisiä, laske tuloilman kuutioprosentti 30 m3 / h: n tarkkuudella yhdelle henkilölle.
    2. Kun kävijöiden määrä muuttuu jatkuvasti, otetaan käyttöön 2 metrin korkeudelta lattiasta huolletun alueen käsite. Määritä tämän tilan määrä (kerro alue 2: llä) ja anna tarvittava monikerta, kuten edellisessä kappaleessa on kuvattu.

    Esimerkkilaskenta ja ilmanvaihto

    Pohjimmekin piirrettävä yksityisen talon ulkoasu, jonka sisäinen pinta-ala on 91,5 m² ja korkeus 3 m. Kuinka lasketaan koko rakennuksen hoodin / sisäänvirtauksen määrä SNiP-tekniikan mukaan:

    1. Etäilman määrä olohuoneesta ja makuuhuoneesta, jolla on tasainen kvadratuuri, on 15,75 x 3 x 1 = 47,25 m³ / h.
    2. Lastenhuoneessa: 21 x 3 x 1 = 63 m³ / h.
    3. Keittiö: 21 x 3 x 1 + 100 = 163 m³ / h.
    4. Kylpyhuoneessa on 25 m³ / h.
    5. Yhteensä 47,25 + 47,25 + 63 + 163 + 25 = 345,5 m³ / h.

    Huom. Ilmanvaihtoa käytävällä ja käytävällä ei ole standardoitu.

    Ulkoisen ilmansyötön järjestelmä ja haitallisten kaasujen päästöt maatilan huoneista

    Nyt tarkistamme tulokset toisen normatiivisen asiakirjan noudattamiseksi. Koska talossa asuu 4 hengen perhe (2 aikuista + 2 lasta), olohuoneessa, makuuhuoneessa ja lastentarhassa pitkään kaksi henkilöä. Laske uudelleen näiden huoneiden ilmanvaihto henkilöiden lukumäärän mukaan: 2 x 30 = 60 m³ / h (kussakin huoneessa).

    Vauvakuoren tilavuus täyttää vaatimukset (63 kuutiota tunnissa), mutta makuuhuoneen ja olohuoneen arvot on säädettävä. Kaksi ihmistä ei riitä 47,25 m³ / h, ota 60 kuutiota ja kertoo jälleen koko ilmankuljetus: 60 + 60 + 63 + 163 + 25 = 371 m³ / h.

    On yhtä tärkeää jakaa ilman virtaus rakennuksessa oikein. Yksityisissä mökeissä on tavallista järjestää luonnolliset ilmanvaihtojärjestelmät - on paljon halvempaa ja helpompaa asentaa sähköpuhaltimia ilmakanavilla. Lisätään vain yksi elementti haitallisten kaasujen pakottamisesta - keittiön huppu.

    Esimerkki ilmakeskuksesta yhden tarinan talossa

    Miten järjestää virtojen luonnollinen virtaus:

    1. Kaikkien asuinympäristöjen syöttö tapahtuu ikkunoiden profiilin sisään asennetuilla automaattisilla venttiileillä tai suoraan ulkoseinään. Loppujen lopuksi standardimuoviset ikkunat ovat ilmatiivis.
    2. Keittiön ja kylpyhuoneen välisessä osuudessa järjestämme kolmesta pystysuorasta akselista, jotka avautuvat katolle.
    3. Sisäovien alla tarjoamme aukkoja, joiden pituus on enintään 1 cm.
    4. Asennetaan keittiön huppu ja yhdistetään se erilliseen pystysuuntaiseen kanavaan. Hän ottaa osan kuormasta - poista 100 kuutiometriä jätekaasua yhden tunnin aikana ruoanlaittoon. Jäljelle jää 371 - 100 = 271 m³ / h.
    5. Kaksi akselia päätämme ristikot kylpyhuoneessa ja keittiössä. Putken mitat ja korkeus lasketaan tämän oppaan viimeisessä osassa.
    6. Kahden kanavan luonnollisen luonnoksen vuoksi ilma kulkee lastentarhasta, makuuhuoneesta ja salista käytävään ja sitten pakoputkille.

    Huomaa: ulkoasun mukaiset tuoreet virrat lähetetään huoneilta, joissa on puhdasta ilmaa saastuneisiin alueisiin, minkä jälkeen ne lähetetään kaivosten läpi.

    Lisätietoja luonnollisen ilmanvaihdon järjestämisestä on videossa:

    Laske poistokanavien halkaisijat

    Muut laskelmat ovat hieman monimutkaisempia, joten seuraamme jokaisessa vaiheessa esimerkkejä laskelmista. Tuloksena on yksiportaisen rakennuksen tuuletusakselien halkaisija ja korkeus.

    Koko pakokaasun tilavuus jaettiin 3 kanavalle: 100 kuutiometriä. Vahvistaa kaapin keittiössä kytkentäkauden aikana, loput 271 kuutiometriä lähtee samasta kaivoksesta luonnollisella tavalla. Virtaus 1 kanavan läpi on 271/2 = 135,5 m³ / h. Putkiosan pinta-ala määritellään kaavalla:

    • F - ilmanvaihtokanavan poikkipinta-ala, m²;
    • L - pakokaasuvirta akselin läpi, m³ / h;
    • ʋ - virtausnopeus, m / s.

    Ohje. Tuuletusaukkojen ilmanopeus on alueella 0,5-1,5 m / s. Laskennallisena arvona otetaan keskiarvo 1 m / s.

    Kuinka laskea yhden putken poikkileikkaus ja halkaisija esimerkissä:

    1. Etsi halkaisijan koko neliömetreinä F = 135.5 / 3600 x 1 = 0.0378 m².
    2. Ympyrän alueen koululausekkeesta määritämme kanavan halkaisija D = 0,22 m. Valitaan lähin suurin ilmakanava vakiosarjasta Ø225 mm.
    3. Jos puhutaan tiilikaivoksesta seinän sisällä, tuuletuskanavan koko 140 x 270 mm (hyvä sattuma, F = 0.378 neliömetriä) sopii löytyneelle osalle.
    Tiilikivi on tiukasti mitoitettu - 14 x 14 ja 27 x 14 cm

    Pakoputken halkaisija kotimaiselle pakokaasulle katsotaan samalla tavalla, vain puhallinpumpulla virtaavan virtauksen nopeus otetaan enemmän - 3 m / s. F = 100/3600 х 3 = 0,009 m² tai Ø110 mm.

    Valitaan putkien korkeus

    Seuraava vaihe on määrittää pakokaasun sisällä oleva vetovoima tietystä korkeuseroista. Parametria kutsutaan käytettävissä olevaksi painovoimaksi ja ilmaistaan ​​Pascalsissa (Pa). Laskentakaava:

    • p on kanavan painovoima paine, Pa;
    • H - korkeusero tuuletusraudan ulostulon ja katon yläpuolella olevan ilmanvaihtokanavan poikki, m;
    • рвздд - tilan tiheys, oletamme 1,2 kg / m³ talon lämpötilassa +20 ° С.

    Laskentamenetelmä perustuu vaaditun korkeuden valintaan. Ensinnäkin päätä, kuinka halukas nostat huppuja katon yli vaikuttamatta rakennuksen ulkonäköön, ja korvaa sitten korkeusarvon kaavassa.

    Esimerkki. Ota korkeusero 4 m ja saada työntöpaine p = 9,81 x 4 (1,27 - 1,2) = 2,75 Pa.

    Nyt tulee vaikein vaihe - aeronaattinen laskenta laukaisukanavista. Tehtävä on selvittää kanavan vastus kaasujen virtaukseen ja verrata tulosta käytettävissä olevaan päähän (2,75 Pa). Jos painehäviö on suurempi, putkea on lisättävä tai suurennettava halkaisijan läpi.

    Kanavan aerodynaaminen vastus lasketaan kaavalla:

    • Δp - akselin kokonaispainehäviö;
    • R on kulkevan virtauksen kitkakohtainen vastustuskyky, Pa / m;
    • H - kanavan korkeus, m;
    • Σξ on paikallisten vastusten kertoimien summa;
    • Pv - dynaaminen paine, Pa.

    Esitämme esimerkin avulla, kuinka vastusarvoa tarkastellaan:

    1. Dynaamisen paineen arvo löytyy kaavasta Pv = 1,2 x 1 2/2 = 0,6 Pa.
    2. Laske kitkakestävyys R = 0,1 / 0,225 x6 = 0,27 Pa / m.
    3. Pakokaasuakselin paikallinen vastus on säleikkö ja 90 ° ulostulo. Näiden tietojen kertoimet ξ ovat vakioarvot, jotka ovat vastaavasti 1,2 ja 0,4. Summa ξ = 1,2 + 0,4 = 1,6.
    4. Lopullinen laskelma: Δp = 0,27 Pa / m × 4 m + 1,6 x 0,6 Pa = 2,04 Pa.

    Huom. 1 m / s laskennassa kerrottujen kertoimien ja ilmanopeuksien arvoja voidaan käyttää akseleiden halkaisijasta riippumatta, jotka olet määrittänyt aiemmin.

    Nyt verrataan laskennallista päätä, joka muodostuu ilmajohdossa ja saatu vastus. Koska p = 2,75 Pa on suurempi kuin painehäviöllä Δp = 2,04 Pa, 4 metriä korkea kaivos toimii kunnolla luonnolliseen pakokaasuun ja tuottaa vaaditun pakokaasuvirtauksen.

    Miten yksinkertaistaa tehtävää - vinkkejä

    Voisit olla varma, että laskelmat ja järjestelyt ilmanvaihtoa varten ovat monimutkaisia ​​asioita. Yritimme selittää metodologiamme helposti saatavilla olevassa muodossa, mutta laskelmat näyttävät silti hankalilta keskimääräiselle käyttäjälle. Anna joitakin suosituksia ongelman yksinkertaistetusta ratkaisusta:

    1. Ensimmäisten kolmen vaiheen täytyy aina mennä läpi - selvittää ulosvedetyn ilman määrä, kehittää virtauskuvio ja laskea poistokanavojen halkaisijat.
    2. Virtausnopeuden ei tulisi ylittää 1 m / s ja määritettävä kanavien poikkileikkaus. Aerodynamiikkaa ei tarvitse päästä eroon - vie ilmakanavat vähintään 4 metrin korkeudelle aurinkosäleistä.
    3. Rakennuksen sisällä yrittää käyttää muoviputkia - sileiden seinämien ansiosta ne eivät käytännössä kestä kaasujen liikkumista.
    4. Ventkanaly, joka on kylmällä ullakolla, on eristettävä.
    5. Puhaltimien ei pitäisi estää kaivosten tuloksia, kuten tavanomaisissa asunnoissa on. Juoksupyörä ei anna normaalia toimintaa luonnolliselle poistoimelle.

    Sisäänrakennukseen asennetaan huoneisiin säädettävät seinäventtiilit, päästä eroon kaikista halkeamista, joissa kylmä ilma pääsee käsiksi taloon.